Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-23T12:40:25.559Z Has data issue: false hasContentIssue false

Synthesis and Characterization of Hydrogels with Ag Nanoparticles

Published online by Cambridge University Press:  02 January 2019

K. G. H Martínez-Reyna*
Affiliation:
Laboratorio Nacional CIACYT-Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Col. Lomas 2a. Sección, C.P 78210, San Luis Potosí, S.L.P., MÉXICO
M. G. García-Valdivieso
Affiliation:
Laboratorio Nacional CIACYT-Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Col. Lomas 2a. Sección, C.P 78210, San Luis Potosí, S.L.P., MÉXICO
H. R. Navarro-Contreras
Affiliation:
Laboratorio Nacional CIACYT-Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Col. Lomas 2a. Sección, C.P 78210, San Luis Potosí, S.L.P., MÉXICO
*
Get access

Abstract

Hydrogels made of sodium 2-acrylamide-2-methypropanesulfonate were synthesized with the goal of creating a polymer for tissue engineering applications. The hydrogels were doped with silver nanoparticles to create hydrogel/Ag with possible antibacterial properties. We varied the weight/volume percentage of Laponite from 3 to 10 w/v% to alter the rheological properties of the hydrogels. Raman spectroscopy was used to study the progress of the chemical reaction at different polymerization times under ultraviolet radiation. By comparing the changes in the intensities of the Raman bands corresponding to C=C and C–C bonds with reaction time, we found that the optimal polymerization time to obtain chains of poly(2-acrylamide-2-methylpropanesulfonate) was 3 to 4 h. Characterization of the hydrogels with scanning electron microscopy indicated pore sizes of 1 to 6 µm.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Caló, E. and Khutoryanskiy, V. V., “Biomedical applications of hydrogels: A review of patents and commercial products,” Eur. Polym. J., vol. 65, pp. 252267, 2015.CrossRefGoogle Scholar
Langer, R. and Vacanti, J. P., “Tissue engineering,” Science (80-. )., vol. 260, no. 5110, pp. 920926, 1993.CrossRefGoogle Scholar
Logerstedt, D. S., Scalzitti, D. A., Bennell, K. L., Hinman, R. S., Silvers-Granelli, H., Ebert, J., Hambly, K., Carey, J. L., Snyder-Mackler, L., Axe, M. J., and McDonough, C. M., “Knee Pain and Mobility Impairments: Meniscal and Articular Cartilage Lesions Revision 2018,” J. Orthop. Sport. Phys. Ther., vol. 48, no. 2, pp. A1A50, 2018.CrossRefGoogle Scholar
Tucker, B., “Tissue Engineering for the Meniscus: A Review of the Literature,” Open Orthop. J., vol. 6, no. 1, pp. 348351, 2012.CrossRefGoogle Scholar
Verdonk, R., Volpi, P., Verdonk, P., Van Der Bracht, H., Van Laer, M., Almqvist, K. F., Vander Eecken, S., Prospero, E., and Quaglia, A., “Indications and limits of meniscal allografts,” Injury, vol. 44, no. SUPPL.1, pp. S21S27, 2013.CrossRefGoogle Scholar
Brophy, R. H. and Matava, M. J., “Surgical Options for Meniscal,” vol. 20, no. 5, pp. 265–272, 2012.Google Scholar
Dakal, T. C., Kumar, A., Majumdar, R. S., and Yadav, V., “Mechanistic basis of antimicrobial actions of silver nanoparticles,” Front. Microbiol., vol. 7, no. NOV, pp. 117, 2016.CrossRefGoogle Scholar
Yang, F., Tadepalli, V., and Wiley, B. J., “3D Printing of a Double Network Hydrogel with a Compression Strength and Elastic Modulus Greater than those of Cartilage,” ACS Biomater. Sci. Eng., vol. 3, no. 5, pp. 863869, 2017.CrossRefGoogle Scholar
Kimling, J., Maier, M., Okenve, B., Kotaidis, V., Ballot, H., and Plech, A., “Turkevich Method for Gold Nanoparticle Synthesis Revisited.pdf,” J. Phys. Chem. B, vol. 110, no. 95 mL, pp. 1570015707, 2006.CrossRefGoogle Scholar
Cummins, H. Z., “Liquid, glass, gel: The phases of colloidal Laponite,” J. Non. Cryst. Solids, vol. 353, no. 41–43, pp. 38913905, 2007.CrossRefGoogle Scholar
Barkoula, N. M., Alcock, B., Cabrera, N. O., and Peijs, T., “Fatigue properties of highly oriented polypropylene tapes and all-polypropylene composites,” Polym. Polym. Compos., vol. 16, no. 2, pp. 101113, 2008.Google Scholar
Hollister, S. J., “Porous scaffold design for tissue engineering,” Nat. Mater., vol. 4, no. 7, pp. 518524, 2005.CrossRefGoogle Scholar