Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-26T08:06:22.107Z Has data issue: false hasContentIssue false

Synthesis and Characterization of Core-Shell Magnetic Mesoporous Silica and Organosilica Nanostructures

Published online by Cambridge University Press:  19 January 2017

Nikola Z. Knezevic*
Affiliation:
Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia
Chiara Mauriello Jimenez
Affiliation:
Institut Charles Gerhardt Montpellier, UMR 5253, CC 1701 Equipe Ingenierie Moleculaire et Nano-objets, Place Eugene Bataillon, 34095 Montpellier Cedex 05, France
Martin Albino
Affiliation:
INSTM and Dept. of Chemistry, Univ. of Florence, 50019, Sesto Fiorentino, Italy
Aleksandar Vukadinovic
Affiliation:
Vinca Institute of Nuclear Sciences, University of Belgrade, POB 522, 11001 Belgrade, Serbia
Ana Mrakovic
Affiliation:
Vinca Institute of Nuclear Sciences, University of Belgrade, POB 522, 11001 Belgrade, Serbia
Erzsebet Illes
Affiliation:
Vinca Institute of Nuclear Sciences, University of Belgrade, POB 522, 11001 Belgrade, Serbia
Djordje Janackovic
Affiliation:
Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia
Jean-Olivier Durand
Affiliation:
Institut Charles Gerhardt Montpellier, UMR 5253, CC 1701 Equipe Ingenierie Moleculaire et Nano-objets, Place Eugene Bataillon, 34095 Montpellier Cedex 05, France
Claudio Sangregorio
Affiliation:
INSTM and CNR-ICCOM, 50019 Sesto Fiorentino, Italy
Davide Peddis
Affiliation:
Vinca Institute of Nuclear Sciences, University of Belgrade, POB 522, 11001 Belgrade, Serbia
*
*Corresponding author: Dr Nikola Z. Knezevic: [email protected]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Initial results en route toward construction of complex magnetic core-shell silica and organosilica nanotheranostics are presented. Magnetite nanoparticles are synthesized by three different methods and embedded within mesoporous silica and organosilica frameworks by different surfactant-templated procedures to produce three types of core-shell nanoparticles. Magnetite nanoparticles (15 nm in diameter) are embedded within mesoporous silica nanoparticles to produce cell-like material with predominantly one magnetite nuclei-resembling core per nanoparticle, with final particle diameter of ca. 150 nm, specific surface area of 573 m2/g and hexagonally structured tubular pores (2.6 nm predominant diameter), extended throughout the volume of nanoparticles. Two forms of spherical core-shell nanoparticles composed of magnetite cores embedded within mesoporous organosilica shells are also obtained by employing ethylene and ethane bridged organobisalkoxysilane precursors. The obtained nanomaterials are characterized by high surface area (978 and 820 m2/g), tubular pore morphology (2 and 2.8 nm predominant pore diameters), different diameters (386 and 100-200 nm), in case of ethylene- and ethane-composed organosilica shells, respectively. Different degree of agglomeration of magnetite nanoparticles was also observed in the obtained materials, and in the case of utilization of surfactant-pre-stabilized magnetite nanoparticles for the syntheses, their uniform and non-agglomerated distribution within the shells was noted.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

References

REFERENCES

Ehlerding, E. B., Chen, F. and Cai, W., Advanced Science 3, 1500223 (2016)Google Scholar
Stojanovic, V., Cunin, F., Durand, J. O., Garcia, M. and Gary-Bobo, M., Journal of Materials Chemistry B (2016)Google Scholar
Knezevic, N. Z. and Durand, J.-O., ChemPlusChem 80, 26 (2015)CrossRefGoogle Scholar
Croissant, J. G., Cattoen, X., Wong Chi Man, M., Durand, J.-O. and Khashab, N. M., Nanoscale 7, 20318 (2015)Google Scholar
Park, J.-H., Gu, L., von Maltzahn, G., Ruoslahti, E., Bhatia, S. N. and Sailor, M. J., Nat Mater 8, 331 (2009)CrossRefGoogle Scholar
Knezevic, N. Z., Stojanovic, V., Chaix, A., Bouffard, E., Cheikh, K. E., Morere, A., Maynadier, M., Lemercier, G., Garcia, M., Gary-Bobo, M., Durand, J.-O. and Cunin, F., Journal of Materials Chemistry B 4, 1337 (2016)Google Scholar
Chaix, A., El Cheikh, K., Bouffard, E., Maynadier, M., Aggad, D., Stojanovic, V., Knezevic, N., Garcia, M., Maillard, P., Morere, A., Gary-Bobo, M., Raehm, L., Richeter, S., Durand, J.-O. and Cunin, F., Journal of Materials Chemistry B 4, 3639 (2016)CrossRefGoogle Scholar
Vallet-Regi, M., Rámila, A., del Real, R. P. and Pérez-Pariente, J., Chemistry of Materials 13, 308 (2001)CrossRefGoogle Scholar
Lai, C.-Y., Trewyn, B. G., Jeftinija, D. M., Jeftinija, K., Xu, S., Jeftinija, S. and Lin, V. S. Y., Journal of the American Chemical Society 125, 4451 (2003)Google Scholar
Lu, J., Liong, M., Li, Z., Zink, J. I. and Tamanoi, F., Small 6, 1794 (2010)CrossRefGoogle Scholar
Knezevic, N. Z., Mrdanovic, J., Borisev, I., Milenkovic, S., Janackovic, D., Cunin, F. and Djordjevic, A., RSC Advances 6, 7061 (2016)Google Scholar
Knezevic, N. Z., Ruiz-Hernandez, E., Hennink, W. E. and Vallet-Regi, M., RSC Advances 3, 9584 (2013)CrossRefGoogle Scholar
Fan, W., Shen, B., Bu, W., Chen, F., He, Q., Zhao, K., Zhang, S., Zhou, L., Peng, W., Xiao, Q., Ni, D., Liu, J. and Shi, J., Biomaterials 35, 8992 (2014)CrossRefGoogle Scholar
Jimenez, C. M., Knezevic, N. Z., Rubio, Y. G., Szunerits, S., Boukherroub, R., Teodorescu, F., Croissant, J. G., Hocine, O., Seric, M., Raehm, L., Stojanovic, V., Aggad, D., Maynadier, M., Garcia, M., Gary-Bobo, M. and Durand, J.-O., Journal of Materials Chemistry B 4, 5803 (2016)Google Scholar
Tudisco, C., Cambria, M. T., Sinatra, F., Bertani, F., Alba, A., Giuffrida, A. E., Saccone, S., Fantechi, E., Innocenti, C., Sangregorio, C., Dalcanale, E. and Condorelli, G. G., Journal of Materials Chemistry B 3, 4134 (2015)CrossRefGoogle Scholar
McDonagh, B. H., Singh, G., Hak, S., Bandyopadhyay, S., Augestad, I. L., Peddis, D., Sandvig, I., Sandvig, A. and Glomm, W. R., Small 12, 301 (2016)Google Scholar
Knezevic, N. Z., Journal of Nanoscience and Nanotechnology 16, 4195 (2016)Google Scholar
Knezevic, N. Z., Processing and Application of Ceramics 8, 109 (2014)Google Scholar
Fantechi, E., Innocenti, C., Zanardelli, M., Fittipaldi, M., Falvo, E., Carbo, M., Shullani, V., Di Cesare Mannelli, L., Ghelardini, C., Ferretti, A. M., Ponti, A., Sangregorio, C. and Ceci, P., ACS nano 8, 4705 (2014)Google Scholar
Knezevic, N. Z., Slowing, I. I. and Lin, V. S. Y., Chempluschem 77, 48 (2012)Google Scholar
Dib, S., Boufatit, M., Chelouaou, S., Sadi-Hassaine, F., Croissant, J., Long, J., Raehm, L., Charnay, C. and Durand, J. O., RSC Advances 4, 24838 (2014)Google Scholar