Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-25T17:13:59.071Z Has data issue: false hasContentIssue false

Synthesis and characterization of CeO2 nanoparticles on porous carbon for Li-ion battery

Published online by Cambridge University Press:  21 June 2017

Hoejin Kim*
Affiliation:
Department of Mechanical Engineering, University of Texas at El Paso, El Paso, TX 79968, USA.
Mohammad Arif Ishtiaque Shuvo
Affiliation:
Department of Mechanical Engineering, University of Texas at El Paso, El Paso, TX 79968, USA.
Hasanul Karim
Affiliation:
Department of Mechanical Engineering, University of Texas at El Paso, El Paso, TX 79968, USA.
Juan C. Noveron
Affiliation:
Department of Chemistry, University of Texas at El Paso, El Paso, TX 79968, USA.
Tzu-liang Tseng
Affiliation:
Department of Industrial, Systems, and Manufacturing, University of Texas at El Paso, El Paso, TX 79968, USA.
Yirong Lin
Affiliation:
Department of Mechanical Engineering, University of Texas at El Paso, El Paso, TX 79968, USA.
*

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Carbon based materials have long been investigated as anodes for lithium ion batteries. Among these materials, porous carbon holds several advantages such as high stability, high specific surface area, and excellent cycling capability. To further enhance the energy storage performance, ceramic nanomaterials have been combined with carbon based materials as hybrid anodes for enhanced specific capacity. The use of metal oxide ceramic nanomaterials could enhance the surface electrochemical reactivity thus leads to the increasing of capacity retention at higher number of cycles. In this research, we synthesized ceria (CeO2) nano-particles on porous carbon to form inorganic-organic hybrid composites as an anode material for Li-ion battery. The high redox potential of ceria is expected to increase the specific capacity and energy density of the system. The electrochemical performance was determined by a battery analyzer. It is observed that the specific capacity could be improved by 77% using hybrid composites anode. The material morphology, crystal structure, and thermal stability were characterized by Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), X-Ray Diffraction (XRD), and Thermogravimetric Analysis (TGA).

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

References

REFERENCES

Shuvo, M. A. I., Khan, M. A. R., Karim, H., Morton, P., Wilson, T., and Lin, Y., ACS appl. mater. & inter., 5, 78817885 (2013).CrossRefGoogle Scholar
Shuvo, M. A. I., Rodriguez, G., Islam, M. T., Karim, H., Ramabadran, N., Noveron, J. C., et al., J. of Appl. Phys., 118, 125102 (2015).CrossRefGoogle Scholar
Yoon, T., Chae, C., Sun, Y.-K., Zhao, X., Kung, H. H., and Lee, J. K., J. of Mater. Chem., 21, 1732517330 (2011).CrossRefGoogle Scholar
Mendoza, M., Rahaman Khan, M. A., Ishtiaque Shuvo, M. A., Guerrero, A., and Lin, Y., ISRN Nano., 2012 (2012).Google Scholar
Rajib, M., Shuvo, M. A. I., Karim, H., Delfin, D., Afrin, S., and Lin, Y., Cera. Inter., 41, 1807-1813 (2015.)CrossRefGoogle Scholar
Rajib, M., Martinez, R., Shuvo, M., Karim, H., Delfin, D., Afrin, S., et al., Inter. J. of Appl. Cera. Tech. , ( 2015).Google Scholar
Shuvo, M. A. I., Tseng, T.-L. B., Khan, M. A. R., Karim, H., Morton, P., Delfin, D., et al., J. of Appl. Phys., 114, 104306 (2013).CrossRefGoogle Scholar
Shuvo, M. A. I., Karim, H., Islam, M. T., Rodriguez, G., Nandasiri, M. I., Schwarz, A. M., et al., SPIE Smar. Stru. & Mate.+ Nond. Eval. & Heal. Moni., 94390H-94390H-8 (2015).Google Scholar
Wang, D., Choi, D., Li, J., Yang, Z., Nie, Z., Kou, R., et al., ACS nano., 3, 907914 (2009).CrossRefGoogle Scholar
Yang, J., Zhou, X.-y., Zou, Y.-l., and Tang, J.-j., Elect. Acta., 56, 85768581 (2011).CrossRefGoogle Scholar
Wang, H., Cui, L.-F., Yang, Y., Sanchez Casalongue, H., Robinson, J. T., Liang, Y., et al., J. of the Amer. Chem. Soci., 132, 1397813980 (2010).Google Scholar
Karim, H., Shuvo, M. A. I., Islam, M. T., Rodriguez, G., Sandoval, A., Nandasiri, M. I., et al., SPIE Smar. Stru. & Mate.+ Nond. Eval. & Heal. Moni., 94390I-94390I-6 (2015).Google Scholar
Zhu, X., Zhu, Y., Murali, S., Stoller, M. D., and Ruoff, R. S., ACS nano., 5, 33333338 (2011).Google Scholar
Wu, Z.-S., Ren, W., Wen, L., Gao, L., Zhao, J., Chen, Z., et al., ACS nano., 4, 31873194 (2010).CrossRefGoogle Scholar
Hu, Y. S., Guo, Y. G., Dominko, R., Gaberscek, M., Jamnik, J., and Maier, J., Adv. Mat., 9, 19631966 (2007).CrossRefGoogle Scholar
Liu, W., Feng, L., Zhang, C., Yang, H., Guo, J., Liu, X., et al., J. of Mat. Chem. A, 1, 69426948 (2013).Google Scholar
Qi, R.-J., Zhu, Y.-J., Cheng, G.-F., and Huang, Y.-H., Nano., 16, 2502 (2005).Google Scholar
Pang, H. and Chen, C., RSC Adv., 4, 1487214878 (2014).Google Scholar
Padmanathan, N. and Selladurai, S., RSC Adv., 4, 65276534 (2014).Google Scholar
Li, C., Sun, N., Ni, J., Wang, J., Chu, H., Zhou, H., et al., J. of Sol. Sta. Chem., 181, 26202625 (2008).CrossRefGoogle Scholar
Maensiri, S., Masingboon, C., Laokul, P., Jareonboon, W., Promarak, V., Anderson, P. L., et al., Cry. grow. & des., 7, 950955 (2007).Google Scholar
Jamalzadeh, Z., Haghighi, M., and Asgari, N., Fro. of Env. Sci. & Eng., 7, 365381 (2013).CrossRefGoogle Scholar
Cui, L.-F., Yang, Y., Hsu, C.-M., and Cui, Y., Nan. Let., 9, 33703374 (2009).Google Scholar
Su, Q., Chang, L., Zhang, J., Du, G., and Xu, B., J. of Phy. Che. C, 117, 42924298 (2013).Google Scholar
Wang, G., Bai, J., Wang, Y., Ren, Z., and Bai, J., Scr. Mat., 65, 339342 (2011).Google Scholar