Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-10T19:51:30.388Z Has data issue: false hasContentIssue false

Switchable Friction Coefficient on Shape Memory Photonic Crystals

Published online by Cambridge University Press:  23 March 2020

Yifan Zhang
Affiliation:
Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL, 32611, U.S.A.
Xingyi Lyu
Affiliation:
Department of Chemical Engineering, University of Florida, Gainesville, FL, 32611, U.S.A.
Yongliang Ni
Affiliation:
Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL, 32611, U.S.A.
Diyang Li
Affiliation:
Department of Chemical Engineering, University of Florida, Gainesville, FL, 32611, U.S.A.
Sin-Yen Leo
Affiliation:
Department of Chemical Engineering, University of Florida, Gainesville, FL, 32611, U.S.A.
Yinong Chen
Affiliation:
Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL, 32611, U.S.A.
Peng Jiang
Affiliation:
Department of Chemical Engineering, University of Florida, Gainesville, FL, 32611, U.S.A.
Curtis R. Taylor*
Affiliation:
Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL, 32611, U.S.A.
*
Get access

Abstract

Intelligent control of friction and adhesion has attracted much attention for use in soft robotics, human-sensor interfaces, and bionics. Here we introduce a shape memory photonic crystal (SMPC) polymer that can be programmed and recovered by solvent to realize switchable surface friction. Micro sliding test show that the friction coefficient on this SMPC in the programmed and recovered state can vary by three times. We also show that the mechanism behind this switchable friction coefficient is the surface roughness related adhesion.

Type
Articles
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCE

Chhowalla, M. and Amaratunga, G.A.J., Lett. to Nat. 407, (2000).Google Scholar
Myshkin, N.K., Petrokovets, M.I., and Kovalev, A. V., Tribol. Int. 38, 910 (2005).CrossRefGoogle Scholar
Cho, Y., Minsky, H.K., Jiang, Y., Yin, K., Turner, K.T., and Yang, S., ACS Appl. Mater. Interfaces 10, 11391 (2018).CrossRefGoogle Scholar
Cho, Y., Kim, G., Cho, Y., Lee, S.Y., Minsky, H., Turner, K.T., Gianola, D.S., and Yang, S., Adv. Mater. 27, 7788 (2015).CrossRefGoogle Scholar
Sui, G., Zhong, W.H., Ren, X., Wang, X.Q., and Yang, X.P., Mater. Chem. Phys. 115, 404 (2009).CrossRefGoogle Scholar
Deng, Z., Smolyanitsky, A., Li, Q., Feng, X., and Cannara, R.J., Nat. Mater. 11, 1032 (2012).CrossRefGoogle Scholar
Liu, D. and Broer, D.J., Angew. Chemie Int. Ed. 53, 4542 (2014).CrossRefGoogle Scholar
Hua, J., Björling, M., Grahn, M., Larsson, R., and Shi, Y., Sci. Rep. 9, 1 (2019).Google Scholar
Yuk, H., Varela, C.E., Nabzdyk, C.S., Mao, X., Padera, R.F., Roche, E.T., and Zhao, X., Nature 575, 169 (2019).CrossRefGoogle Scholar
Chen, Y.C. and Yang, H., ACS Nano 11, 5332 (2017).CrossRefGoogle Scholar
Tian, H., Li, X., Shao, J., Wang, C., Wang, Y., Tian, Y., and Liu, H., Adv. Mater. Interfaces 6, 1 (2019).Google Scholar
Raut, H.K., Baji, A., Hariri, H.H., Parveen, H., Soh, G.S., Low, H.Y., and Wood, K.L., ACS Appl. Mater. Interfaces 10, 1288 (2018).CrossRefGoogle Scholar
Lee, E. and Yang, S., MRS Commun. 5, 97 (2015).CrossRefGoogle Scholar
Chen, C.M., Chiang, C.L., Lai, C.L., Xie, T., and Yang, S., Adv. Funct. Mater. 23, 3813 (2013).CrossRefGoogle Scholar
Eisenhaure, J.D., Xie, T., Varghese, S., and Kim, S., ACS Appl. Mater. Interfaces 5, 7714 (2013).CrossRefGoogle Scholar
Lee, H., Lee, B.P., and Messersmith, P.B., Nature 448, 338 (2007).CrossRefGoogle Scholar
Xue, L., Kovalev, A., Thöle, F., Rengarajan, G.T., Steinhart, M., and Gorb, S.N., Langmuir 28, 10781 (2012).CrossRefGoogle Scholar
Zheng, F., Bai, Y., Wang, Q., and Wang, T., J. Mater. Sci. 49, 8394 (2014).CrossRefGoogle Scholar
Fang, Y., Ni, Y., Leo, S.Y., Taylor, C., Basile, V., and Jiang, P., Nat. Commun. 6, 1 (2015).Google Scholar
Fang, Y., Leo, S., Ni, Y., Yu, L., Qi, P., Wang, B., Basile, V., Taylor, C., and Jiang, P., Adv. Opt. Mater. 1509 (2015).Google Scholar
Leo, S.Y., Zhang, W., Zhang, Y., Ni, Y., Jiang, H., Jones, C., Jiang, P., Basile, V., and Taylor, C., Small 14, 1 (2018).CrossRefGoogle Scholar
Ni, Y., Zhang, Y., Leo, S., Fang, Y., Zhao, M., Yu, L., Schulze, K.D., Sawyer, W.G., Angelini, T.E., Jiang, P., and Taylor, C.R., ACS Appl. Nano Mater. 1, 6081 (2018).CrossRefGoogle Scholar
Persson, B.N.J., J. Chem. Phys. 115, 3840 (2001).CrossRefGoogle Scholar
Persson, B.N.J., Albohr, O., Tartaglino, U., Volokitin, A.I., and Tosatti, E., J. Phys. Condens. Matter 17, (2005).Google Scholar
Yang, C., Persson, B.N.J., Israelachvili, J., and Rosenberg, K., Epl 84, (2008).Google Scholar
Persson, B.N.J. and Scaraggi, M., J. Chem. Phys. 141, (2014).Google Scholar
Persson, B.N.J., J. Chem. Phys. 115, 3840 (2001).CrossRefGoogle Scholar
Deng, Z., Smolyanitsky, A., Li, Q., Feng, X., and Cannara, R.J., Nat. Mater. 11, 1032 (2012).CrossRefGoogle Scholar
Persson, B.N.J., Albohr, O., Tartaglino, U., Volokitin, A.I., and Tosatti, E., J. Phys. Condens. Matter 17, (2005).Google Scholar
Jiang, P., Bertone, J.F., Hwang, K.S., and Colvin, V.L., Chem. Mater. 11, 2132 (1999).CrossRefGoogle Scholar
Garcia, M., Schulze, K.D., O’Bryan, C.S., Bhattacharjee, T., Sawyer, W.G., and Angelini, T.E., Tribol. - Mater. Surfaces Interfaces 11, 187 (2017).CrossRefGoogle Scholar
Persson, B.N.J. and Scaraggi, M., J. Chem. Phys. 141, (2014).Google Scholar
Dorogin, L., Tiwari, A., Rotella, C., Mangiagalli, P., and Persson, B.N.J., Phys. Rev. Lett. 118, 1 (2017).CrossRefGoogle Scholar
Yamaguchi, T., Sugawara, T., Takahashi, M., Shibata, K., Moriyasu, K., Nishiwaki, T., and Hokkirigawa, K., Tribol. Int. 116, 264 (2017).CrossRefGoogle Scholar