Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-19T11:34:22.043Z Has data issue: false hasContentIssue false

Surface Plasmon Resonant Gold-Palladium Bimetallic Nanoparticles for Promoting Catalytic Oxidation

Published online by Cambridge University Press:  30 April 2019

Jonathan Boltersdorf*
Affiliation:
United States Army Research Laboratory, Sensors and Electron Devices Directorate, Adelphi, MD20783-1138, USA
Asher C. Leff
Affiliation:
United States Army Research Laboratory, Sensors and Electron Devices Directorate, Adelphi, MD20783-1138, USA General Technical Services, Adelphi, MD20783-1138, USA
Gregory T. Forcherio
Affiliation:
United States Army Research Laboratory, Sensors and Electron Devices Directorate, Adelphi, MD20783-1138, USA
Joshua P. McClure
Affiliation:
United States Army Research Laboratory, Sensors and Electron Devices Directorate, Adelphi, MD20783-1138, USA
Cynthia A. Lundgren
Affiliation:
United States Army Research Laboratory, Sensors and Electron Devices Directorate, Adelphi, MD20783-1138, USA
*
Get access

Abstract

Colloidal gold-palladium (Au-Pd) bimetallic nanoparticles were used as catalysts to study the ethanol (EtOH) photo-oxidation cycle, with an emphasis towards driving carbon-carbon (C-C) bond cleavage at low temperatures. Au-Pd bimetallic alloy and core-shell nanoparticles were prepared to synergistically couple a plasmonic absorber (Au) with a catalytic metal (Pd) with composite optical and catalytic properties tailored towards promoting photocatalytic oxidation. Catalysts utilizing metals that exhibit localized surface plasmon resonance (SPR) can be harnessed for light-driven enhancement for small molecule oxidation via augmented photocarrier generation/separation and photothermal conversion. The coupling of Au to Pd in an alloy or core-shell nanostructure maintains SPR-induced charge separation, mitigates the poisoning effects on Pd, and allows for improved EtOH oxidation. The Au-Pd nanoparticles were coupled to semiconducting titanium dioxide photocatalysts to probe their effects on plasmonically-assisted photocatalytic oxidation of EtOH. Complete oxidation of EtOH to CO2 under solar simulated-light irradiation was confirmed by monitoring the yield of gaseous products. Bimetallics provide a pathway for driving desired photocatalytic and photoelectrochemical reactions with superior catalytic activity and selectivity.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Boltersdorf, J., King, N., Maggard, P.A., CrystEngComm., 17, 22252241 (2015).CrossRefGoogle Scholar
Osterloh, F.E., Chem. Mater., 20, 3554, (2008).CrossRefGoogle Scholar
Osterloh, F.E., Chem. Soc. Rev., 42, 22942320, (2013).CrossRefGoogle Scholar
Boltersdorf, J., Forcherio, G.T., McClure, J.P., Baker, D.R., Leff, A.C., Lundgren, C., J. Phys. Chem. C, 122, 2893428948, (2018).CrossRefGoogle Scholar
Jovic, V., Chen, W.-T., Sun-Waterhouse, D., Blackford, M.G., Idriss, H., Waterhouse, G.I.N., J. Catal., 305, 307317, (2013).CrossRefGoogle Scholar
Kim, S.M., Lee, S.W., Moon, S.Y., Park, J.Y., J. Phys. Condens. Matter., 28, 254002, (2016).CrossRefGoogle Scholar
McClure, J.P., Grew, K.N., Baker, D.R., Gobrogge, E., Das, N., Chu, D., Nanoscale, 10, 78337850, (2018).CrossRefGoogle Scholar
Tan, T.H., Scott, J., Ng, Y.H., Taylor, R.A., Aguey-Zinsou, K.-F., Amal, R., ACS Catal ., 6, 80218029, (2016).CrossRefGoogle Scholar
Tan, T.H., Scott, J., Ng, Y.H., Taylor, R.A., Aguey-Zinsou, K.-F., Amal, R., ACS Catal ., 6, 18701879, (2016).CrossRefGoogle Scholar
Qiu, J., Wei, W.D., J. Phys. Chem. C, 118, 2073520749, (2014).CrossRefGoogle Scholar
Zhang, Y., He, S., Guo, W., Hu, Y., Huang, J., Mulcahy, J.R., Wei, W.D., Chem. Rev., 118, 29272954, (2018).CrossRefGoogle Scholar
Xiao, Q., Sarina, S., Bo, A., Jia, J., Liu, H., Arnold, D.P., Huang, Y., Wu, H., Zhu, H., ACS Catal., 4, 17251734, (2014).CrossRefGoogle Scholar
Lamy, C.B., E., M.; Leger, J-M., J. Appl. Electrochem., 31, 799809, (2001).CrossRefGoogle Scholar
Duchesne, P.N., Li, Z.Y., Deming, C.P., Fung, V., Zhao, X., Yuan, J., Regier, T., Aldalbahi, A., Almarhoon, Z., Chen, S., Jiang, D.-e., Zheng, N., Zhang, P., Nat. Mater., 17, 10331039, (2018).CrossRefGoogle Scholar
Forcherio, G.T., Baker, D.R., Boltersdorf, J., Leff, A.C., McClure, J.P., Grew, K.N., Lundgren, C.A., J. Phys. Chem. C , 122, 2890128909 (2018).CrossRefGoogle Scholar
Hutchings, G.J., Kiely, C.J., Acc. Chem. Res., 46,17591772, (2013).CrossRefGoogle Scholar
Ksar, F., Ramos, L., Keita, B., Nadjo, L., Beaunier, P., Remita, H., Chem. Mater., 21, 36773683 (2009).CrossRefGoogle Scholar
Li, Y., Hu, J., Ma, D., Zheng, Y., Chen, M., Wan, H., ACS Catal ., 8, 17901795, (2018).CrossRefGoogle Scholar
Molina, L.M., Benito, A., Alonso, J.A., Mol. Catal., 449, 813 (2018).CrossRefGoogle Scholar
Su, R., Tiruvalam, R., Logsdail, A.J., He, Q., Downing, C.A., Jensen, M.T., Dimitratos, N., Kesavan, L., Wells, P.P., Bechstein, R., Jensen, H.H., Wendt, S., Catlow, C.R.A., Kiely, C.J., Hutchings, G.J., Besenbacher, F., ACS Nano, 8, 34903497, (2014).CrossRefGoogle Scholar
Zheng, Z., Tachikawa, T., Majima, T., J. Am. Chem. Soc., 136, 68706873 (2014).CrossRefGoogle Scholar
Zheng, Z., Tachikawa, T., Majima, T., J. Am. Chem. Soc., 137, 948957 (2015).CrossRefGoogle Scholar