Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-23T12:59:42.212Z Has data issue: false hasContentIssue false

Surface Functionalization of Ordered Mesoporous Hollow Carbon Spheres with Ru Organometallic Compounds as Supports of Low-Pt Content Nanocatalysts for Alkaline Hydrogen and Oxygen Evolution Reactions

Published online by Cambridge University Press:  09 October 2020

J.C. Martínez-Loyola
Affiliation:
Sustentabilidad de los Recursos Naturales y Energía, Cinvestav Unidad Saltillo, Av. Industria Metalúr-gica 1062, Parque Industrial Ramos Arizpe, Ramos Arizpe, Coah. C.P.25900, México.
I.L. Alonso-Lemus
Affiliation:
CONACyT-Sustentabilidad de los Recursos Naturales y Energía, Cinvestav Unidad Saltillo.
M.E. Sánchez-Castro
Affiliation:
Sustentabilidad de los Recursos Naturales y Energía, Cinvestav Unidad Saltillo, Av. Industria Metalúr-gica 1062, Parque Industrial Ramos Arizpe, Ramos Arizpe, Coah. C.P.25900, México.
B. Escobar-Morales
Affiliation:
CONACyT-Centro de Investigación Científica de Yucatán, Calle 43 No. 130 Col. Chuburná de Hidal-go, Mérida, Yucatán, C.P. 97200, México.
J.R. Torres-Lubián
Affiliation:
Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna No. 140, Saltillo, Coah. C.P. 25294, México.
F.J. Rodríguez-Varela*
Affiliation:
Sustentabilidad de los Recursos Naturales y Energía, Cinvestav Unidad Saltillo, Av. Industria Metalúr-gica 1062, Parque Industrial Ramos Arizpe, Ramos Arizpe, Coah. C.P.25900, México.
*
Get access

Abstract

Herein, we report a methodology that leads to the formation of Ru metallic sites, followed by the development and anchorage of Pt-Ru alloyed nanoparticles on the surface of Ordered Mesoporous Hollow Carbon Spheres (OMHCS). Along with the Ru sites, it is demonstrated that the functionalization promotes the formation of functional groups on the surface of the OMHCS. In a first stage, OMHCS are functionalized with the [(η6-C6H5OCH2CH2OH)RuCl2]2 (Ru-dim) and [(η6-C6H4CH(CH3)2CH3)RuCl2]2 (Ru-cym) organometallic compounds. Afterwards, Pt nanoparticles are dispersed by the microwave-assisted polyol method over the functionalized supports obtaining the low-metal content 5 wt. % Pt/OMHCSRu-dim and Pt/OMHCSRu-cym nanocatalysts. The degree of Ru alloyed is found to be around 35%. The low-Pt content Pt/OMHCSRu-cym and Pt/OMHCSRu-dim exhibit a higher catalytic activity for the Oxygen (OER) and the Hydrogen (HER) Evolution Reactions than the Pt/C benchmark and the Pt/OMHCS nanocatalysts. The overpotential for the OER at 10 mA cm-2OER) is 300 mV and 210 mV smaller at Pt/OMHCSRu-cym and Pt/OMHCSRu-dim compared to Pt/C, respectively. The corresponding values of the HER at -10 mA cm-2HER) are 14 and 18 mV smaller, respectively. The high catalytic activity of Pt/OMHCSRu-cym and Pt/OMHCSRu-dim has been attributed in part to the presence of Ru0 and RuO2 species from organometallic functionalization, and the modification of the d-valence band of Pt. Their high performance for the OER and the HER opens new lines of research for the design of nanocatalysts for alkaline electrochemical water splitting.

Type
Articles
Copyright
Copyright © The Author(s), 2020, published on behalf of Materials Research Society by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Dekel, D.R., J. Power Sources 375, 158 (2018).CrossRefGoogle Scholar
Anantharaj, S., Ede, S.R., Karthick, K., Sam Sankar, S., Sangeetha, K., Karthik, P. E., and Kundu, S., Energy Environ. Sci. 11, 744 (2018).CrossRefGoogle Scholar
Wu, W., Wu, Y., Zheng, D., Wang, K., and Tang, Z., Electrochim. Acta 320, 134568 (2019).CrossRefGoogle Scholar
Malik, B., Anantharaj, S., Karthick, K., Pattanayak, D. K., and Kundu, S., Catal. Sci. Technol. 7, 2486 (2017).CrossRefGoogle Scholar
Ding, J., Shao, Q., Feng, Y., and Huang, X., Nano Energy 47, 1 (2018).CrossRefGoogle Scholar
Wang, J., Ji, Y., Yin, R., Li, Y., Shao, Q., and Huang, X., J. Mater. Chem. A 7, 6411 (2019).CrossRefGoogle Scholar
Liyanage, D., Li, D., Cheek, Q., Baydoun, H., and Brock, S., J. Mater. Chem. A 5, 17609 (2017).CrossRefGoogle Scholar
Bhowmik, T., Kundu, M.K., and Barman, S., ACS Appl. Mater. Inter. 8, 28678 (2016).CrossRefGoogle Scholar
Zheng, Y., Jiao, Y., Zhu, Y., Li, L., Han, Y., Chen, Y., Jaroniec, M., and Qiao, S., J. Am. Chem. Soc. 138, 16174 (2016).CrossRefGoogle Scholar
Jiang, P., Yang, Y., Shi, R., Xia, G., Chen, J., Su, J., and Chen, Q., J. Mater. Chem. A 5, 5475 (2017).CrossRefGoogle Scholar
Yu, J., Guo, Y., Miao, S., Ni, M., Zhou, W., and Shao, Z., ACS Appl. Mater. Inter. 10, 34098 (2018).CrossRefGoogle Scholar
Yoon, D., Lee, J., Seo, B., Kim, B., Baik, H., Joo, S.H., and Lee, K., Small 13, 1700052 (2017).CrossRefGoogle Scholar
Siller-Ceniceros, A.A., Sánchez-Castro, M.E., Morales-Acosta, D., Torres-Lubián, J.R., Martínez-Gurra, E., and Rodríguez-Varela, J., ChemElectroChem. 6, 4902 (2019).CrossRefGoogle Scholar
Siller-Ceniceros, A.A., Sánchez-Castro, M.E., Morales-Acosta, D., Torres-Lubian, J.R., Martínez G, E.., and Rodríguez-Varela, F.J., Appl. Catal. B: Environ. 209, 455 (2017).CrossRefGoogle Scholar
Chalgin, A., Song, C., Tao, P., Shang, W., Deng, T., and Wu, J., Prog. Nat. Sci. Mater. DOI: 10.1016/j.pnsc.2020.01.003.Google Scholar
Salazar-Oropeza, M., Escobar-Morales, B., Reguera, E., Rodriguez-Varela, F.J., and Alonso-Lemus, I.L., ECS Transactions 86, 595 (2018).CrossRefGoogle Scholar
Soleimannejad, J., and White, C., Organometallics 24, 2538 (2005).CrossRefGoogle Scholar
Hodson, E., and Simpson, S.J., Polyhedron 23, 2695 (2004).CrossRefGoogle Scholar
Obreja, A., Cristea, D., Gavrila, R., Schiopu-Tucureanu, V., Dinescu, A., Danila, M., and Florin, C., Appl. Surf. Sci. 276, 458 (2013).CrossRefGoogle Scholar
Jabari Seresht, R., Jahanshahi, M., Rashidi, A., and Ghoreyshi, A.A., Iran. J. Energy Environ. 4, 53 (2013).Google Scholar
Lee, D.W., De Los Santos V., L., Seo, J.W., Felix, L.L., Bustamante D., A., Cole, J.M., and Barnes, C.H.W., J. Phys. Chem. B 114, 5723 (2010).CrossRefGoogle Scholar
Bonelli, M., Ferrari, A., Fioravanti, A., Miotello, A., and Ossi, P., MRS Proceedings 593, 359 (2011).CrossRefGoogle Scholar
Sánchez, N.A., Rincón, C., Zambrano, G., Galindo, H., and Prieto, P., Thin Solid Films 373, 247 (2000).CrossRefGoogle Scholar
Dresselhaus, M., Jorio, A., Filho, A., and Saito, R., Philos. Trans. R. Soc. A 368, 5355 (2010).CrossRefGoogle Scholar
Kaniyoor, A., and Ramaprabhu, S., AIP Adv. 2, 032183 (2012).CrossRefGoogle Scholar
Claramunt, S., Varea, A., Lopez-Diaz, D., Mercedes Velazquez, M., Cornet, A., and Cirera, A., J. Phys. Chem. C 119, 10123 (2015).CrossRefGoogle Scholar
Antony, R.P., Preethi, L.K., Gupta, B., Mathews, T., Dash, S., and Tyagi, A.K., Mater. Res. Bull. 70, 60 (2015).CrossRefGoogle Scholar
Bekyarova, E., Sarkar, S., Wang, F., Itkis, M.E., Kalinina, I., Tian, X., and Haddon, R.C., Acc. Chem. Res. 46, 65 (2013).CrossRefGoogle Scholar
Favero, D., Marcon, V.R.R., Barcellos, T., Gómez, C.M., Sanchis, M.J., Carsí, M., Figueroa, C.A., and Bianchi, O., J. Mol. Liq. 285, 136 (2019).CrossRefGoogle Scholar
Zahed, B., and Hassan, H., Appl. Surf. Sci. 328, 536 (2015).CrossRefGoogle Scholar
Panickar, R., Sobhan, C.B., and Chakravorti, S., Vacuum 172, 109108 (2020).CrossRefGoogle Scholar
Esiner, S., Willems, R., Furlan, A., Li, W., Wienk, M., and Janssen, R., J. Mater. Chem. A 3, 23936 (2015).CrossRefGoogle Scholar
Dang, Q., Int. J. Electrochem. Sci. 12, 10187 (2017).CrossRefGoogle Scholar
Antolini, E., and Cardellini, F., J. Alloys Compd. 315, 118 (2001).CrossRefGoogle Scholar
Ko, I.-H., Lee, W.-D., Baek, J.Y., Sung, Y.-E., and Lee, H.-I., Mater. Chem. Phys. 183, 11 (2016).CrossRefGoogle Scholar
Zhang, J., Qu, X., Han, Y., Shen, L., Yin, S., Li, G., Jiang, Y., and Sun, S., Appl. Catal. B: Environ. 263, 118345 (2020).CrossRefGoogle Scholar
Lewera, A., Zhou, W.P., Vericat, C., Chung, J.H., Haasch, R., Wieckowski, A., and Bagus, P.S., Electrochim. Acta 51, 3950 (2006).CrossRefGoogle Scholar
Dubkov, V., Mironov, S., Chizh, K., and Yuryev, V., J. Phys. Conf. Series 816, 12011 (2016).Google Scholar
Yin, J., Cai, W., Zheng, Y., and Zhao, L., Surf. Coat. Technol. 198, 329 (2005).CrossRefGoogle Scholar
Dong, C., Li, Z., Zhang, L., Li, G., Yao, H., Wang, J., Liu, Q., and Li, Z., Diam. Relat. Mater. 92, 32 (2019).CrossRefGoogle Scholar
Jiang, R., Tran, D.T., Li, J., and Chu, D., Energy Environ. Mater. 2, 201 (2019).CrossRefGoogle Scholar
Corpuz, A.R., Wood, K.N., Pylypenko, S., Dameron, A.A., Joghee, P., Olson, T.S., Bender, G., Dinh, H.N., Gennett, T., Richards, R.M., and O'Hayre, R., J. Power Sources 248, 296 (2014).CrossRefGoogle Scholar
Yu, J., He, Q., Yang, G., Zhou, W., Shao, Z., and Ni, M., ACS Catal. 9, 9973 (2019).CrossRefGoogle Scholar
Supplementary material: File

Martínez-Loyola et al. supplementary material

Supplementary figures

Download Martínez-Loyola et al. supplementary material(File)
File 1.7 MB