Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-05T04:16:01.140Z Has data issue: false hasContentIssue false

Study of TiN nanodisks with regard to application for Heat-AssistedMagnetic Recording

Published online by Cambridge University Press:  12 January 2016

Jacek Gosciniak*
Affiliation:
Tyndall National Institute, University College Cork, Lee Maltings Complex, Dyke Parade, Cork T12R5CP, Ireland
John Justice
Affiliation:
Tyndall National Institute, University College Cork, Lee Maltings Complex, Dyke Parade, Cork T12R5CP, Ireland
Umar Khan
Affiliation:
Tyndall National Institute, University College Cork, Lee Maltings Complex, Dyke Parade, Cork T12R5CP, Ireland
Brian Corbett
Affiliation:
Tyndall National Institute, University College Cork, Lee Maltings Complex, Dyke Parade, Cork T12R5CP, Ireland
Get access

Abstract

In recent years titanium nitride is being considered as a very promisingplasmonic material for data storage applications as it exhibits a pronouncedplasmonic dipolar resonance and has high thermal stability. However, there is alack of research where higher order resonance modes are examined. We addressthis here by performing angle dependent spectral transmission measurementsnanodisks arrays made from titanium nitride. The measurements show strongpolarization dependence with s-polarized light causing excitation of thequadrupole and higher order resonance plasmonic modes. These higher order modesare required for the state-of-the-art designs of near-field transducers. This,together with its outstanding thermal properties, makes TiN a favourablematerial for data storage applications.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Maier, S. A., and Atwater, H. A., “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. of Appl. Phys. 98(1), 011101 (2005).Google Scholar
Barnes, W. L., Dereux, A., and Ebbesen, T. W., “Surface plasmon subwavelength optics,” Nature 424, 824830 (2003).Google Scholar
Khurgin, J. B., and Boltasseva, A., “Reflecting upon the losses in plasmonics and metamaterials,” MRS Bull. 37, 768779 (2012).Google Scholar
Gosciniak, J., Markey, L., Dereux, A., and Bozhevolnyi, S. I., “Thermo-optic control of dielectric-loaded plasmonic Mach–Zehnder interferometers and directional coupler switches,” Nanotechnology 23(44), 444008 (2012).Google Scholar
Gosciniak, J., and Bozhevolnyi, S. I., “Performance of thermo-optical components based on dielectric-loaded surface plasmon polariton waveguides,” Sci. Rep. 3, 1803 (2013).Google Scholar
Gosciniak, J., Holmgaard, T., and Bozhevolnyi, S. I., “Theoretical analysis of long-range dielectric-loaded surface plasmon polariton waveguides,” J. of Lightwave Technology 29(10), 14731481 (2011).Google Scholar
Gosciniak, J., Nielsen, M. G., Markey, L., Dereux, A., Bozhevolnyi, S. I., “Power monitoring in dielectric-loaded plasmonic waveguides with internal Wheatstone bridges,” Opt. Express 21(5), 53005308 (2013).Google Scholar
Aizpurua, J., Bryant, G. W., Richter, L. J., and de Abajo, F. J. G., “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005).CrossRefGoogle Scholar
Novotny, L., “Effective Wavelength Scaling for Optical Antennas,” Phys. Rev. Lett. 98, 266802 (2007).Google Scholar
Gosciniak, J., Mooney, M., Gubbins, M., and Corbett, B., “Novel droplet near-field transducer for a heat-assisted magnetic recording,” Nanophotonics, DOI 10.1515/nanoph-2015-0031, (2015).Google Scholar
Gosciniak, J., Mooney, M., Gubbins, M., and Corbett, B., “Mach-Zehnder Interferometer waveguide as a light delivery system for a heat assisted magnetic recording,” IEEE Transactions on Magnetics, DOI 10.1109/TMAG.2015.2477434, (2015).Google Scholar
Bhargava, S., and Yablonovitch, E., “Lowering HAMR Near-Field Transducer Temperature via Inverse Electromagnetic Design,” IEEE Trans. On Magn. 51(4), 3100407–3100407 (2015).Google Scholar
West, P. R., Ishii, S., Naik, G. V., Emani, N. K., Shalaev, V. M., and Boltasseva, A., “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795808 (2010).Google Scholar
Rhodes, C., Franzen, S., Mari, J.-P.., Losego, M., Leonard, D. N., Laughlin, B., Duscher, G., and Weibel, S., “Surface plasmon resonance in conducting metal oxides,” J. Appl. Phys. 100, 054905 (2006).Google Scholar
Kim, M J., Naik, G. V., Emani, N. K., Guler, U., and Boltasseva, A., “Plasmonic resonances in nanostructured transparent conducting oxide films,” IEEE Journal of Selected Topics in Quantum Electronics 19, 4601907 (2013).Google Scholar
Hibbins, A. P., and Sambles, J. R., “Surface plasmon-polariton study of the optical dielectric function of titanium nitride,” J. Modern Opt. 45 (10), 20512062 (1998).Google Scholar
Cortie, M. B., Giddings, J., and Dowd, A., “Optical properties and plasmon resonances of titanium nitride nanostructures,” Nanotechnology 21, 115201 (2010).Google Scholar
Naik, G. V., Shalaev, V., and Boltasseva, A., “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25, 32643294 (2013).Google Scholar
Guler, U., Ndukaife, J. C., Naik, G. V., Nnanna, A. G. A., Kildishev, A.V., Shalaev, V. M., Boltasseva, A., “Local Heating with Lithographically Fabricated Plasmonic Titanium Nitride Nanoparticles,” Nano Lett. 13 (12), 60786083 (2013).Google Scholar
Guler, U., Kildishev, A., Boltasseva, A., and Shalaev, V., “Plasmonics on the slope of enlightenment: the role of transition metal nitrides,” Faraday Discussions 178, 7186 (2015).Google Scholar
Patsalas, P., Kalfagiannis, N., and Kassavetis, S., “Optical properties and plasmonic performance of titanium nitride,” Materials 8, 31283154 (2015).Google Scholar
Zgrabik, Ch. M., and Hu, E. L., “Optimization of sputtered titanium nitride as a tunable metal for plasmonic applications,” Opt. Mat. Express 5(12), 27862797 (2015).Google Scholar
Bagheri, S., Zgrabik, Ch. M., Gissibl, T., Tittl, A., Sterl, F., Walter, R., De Zuani, S., Berrier, A., Stauden, T., Richter, G., Hu, E. L., and Giessen, H., “Large-area fabrication of TiN nanoantenna arrays for refractory plasmonics in the mid-infrared by femtosecond direct laser writing and interference lithography,” Opt. Mat. Express 5(11), 26252633 (2015).Google Scholar
Grigorenko, A. N., Polini, M., and Novoselov, K. S., “Graphene plasmonics,” Nat. Photonics 6, 749758 (2012).Google Scholar
de Abajo, F. J. G., “Graphene Plasmonics: Challenges and Opportunities,” ACS Photonics 1, 135152 (2014).Google Scholar
Gosciniak, J., and Tan, D. T. H., “Theoretical investigation of graphene-based photonic modulators,” Scientific Reports 3, 1897 (2013).Google Scholar
Gosciniak, J., Tan, D. T. H., and Corbett, B., “Enhanced performance of graphene-based electro-absorption waveguide modulators by engineered optical modes,” J. of Physics D: Applied Physics 48(23), 235101 (2015).CrossRefGoogle Scholar
Strohfeldt, F., Tittl, A., Schaferling, M., Neubrech, F., Kreibig, U., Griessen, R., and Giessen, H., “Yttrium Hydride Nanoantennas for Active Plasmonics,” Nano Lett. 14, 11401147 (2014).Google Scholar
Sterl, F., Strohfeldt, N., Walter, R., Griessen, R., Tittl, A., and Giessen, H., “Magnesium as Novel Material for Active Plasmonics in the Visible Wavelength Range,” Nano Lett. doi:10.1021/acs.nanolett.5b03029, (2015).Google Scholar
Gosciniak, J., Justice, J., Khan, U., and Corbet, B., “Ceramic transducer for data storage applications,” ACS Nano (2016). (under review)Google Scholar
Challener, W. A., Peng, Ch., Itagi, A. V., Karns, D., Peng, W., Peng, Y., Yang, X. M., Zhu, X., Gokemeijer, N. J., Hsia, Y. –T., Rottmayer, R. E., Seigler, M. A. and Gage, E. C., “Heat-assisted megnetic recording by a near-field transducer with efficient optical energy transfer,” Nature Photon. 3, 220224 (2009).Google Scholar
Stipe, B. C., Strand, T. C., Poon, C. C., Balamane, H., Boone, T. D., Katine, J. A., Li, J. –L., Rawat, V., Nemoto, H., Hirotsune, A., Hellwig, O., Ruiz, R., Dobisz, E., Kercher, D. S., Robertson, N., Albrecht, T. R., Terris, B. D., “Magnetic recording at 1.5 Pb m-2 using an integrated plasmonic antenna,” Nature Photon. 4, 484488 (2010).Google Scholar
Zhou, N., Xu, X., Hammack, A. T., Stipe, B. C., Gao, K., Scholz, W. and Gage, E. C., “Plasmonic near-field transducer for heat-assisted magnetic recording,” Nanophotonics 3(3), 141155 (2014).Google Scholar
Johnson, R. W. and Christy, P. B., “Optical constants of the noble metals,” Phys. Rev. B 6, 43704379 (1972).Google Scholar