Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-10T19:56:34.276Z Has data issue: false hasContentIssue false

Spray-deposited metal-chalcogenide photodiodes for low cost infrared imagers

Published online by Cambridge University Press:  29 July 2020

Tommy O. Boykin II
Affiliation:
Physics, University of Central Florida, Orlando, FL32816USA Truventic LLC, 1209 W. Gore St. Orlando, FL32805USA
Nagendra Dhakal
Affiliation:
Physics, University of Central Florida, Orlando, FL32816USA Truventic LLC, 1209 W. Gore St. Orlando, FL32805USA
Javaneh Boroumand
Affiliation:
Physics, University of Central Florida, Orlando, FL32816USA
F. Javier Gonzalez
Affiliation:
Physics, University of Central Florida, Orlando, FL32816USA Truventic LLC, 1209 W. Gore St. Orlando, FL32805USA
Isaiah O. Oladeji
Affiliation:
Truventic LLC, 1209 W. Gore St. Orlando, FL32805USA
Pedro Figueiredo
Affiliation:
Truventic LLC, 1209 W. Gore St. Orlando, FL32805USA
Stephen Neushul
Affiliation:
iCRco, Goleta, CA
Robert E. Peale
Affiliation:
Physics, University of Central Florida, Orlando, FL32816USA Truventic LLC, 1209 W. Gore St. Orlando, FL32805USA
Get access

Abstract

Low-cost, light-weight, low-power, large-format, room-temperature, mid-wave infrared (MWIR) detectors are needed for reduced-scale aircraft. An opportunity, suggested by direct-read X-radiography systems, is the use of thin film transistor (TFT) array as read-out integrated circuit (ROIC) for low-cost sensors deposited directly and unpatterned onto this ROIC. TFTs have already been thoroughly optimized for power, weight, large-format, and cost by the flat-panel-display industry. We present experimental investigation of aqueous-spray-deposited, mid-wave-IR, metal-chalcogenide heterojunction CdS/PbS photodiodes for this application. Measured responsivity, detectivity D*, and photoresponse spectra are reported.

Type
Articles
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

U. S. Air Force Small Business Innovative Research Solicitation Topic AF193-005, “Readout Integrated Circuit for Low Cost Infrared Focal Plane Arrays” (2019).Google Scholar
Zeiss/Bosello X-ray imaging panel, Bosello High Technology USA LLC, 980 Executive Drive, Warsaw, IN 46580-8535 USA, bosello.eu.Google Scholar
Bouromand, Javaneh and Peale, R. E., “Direct conversion X-ray detector array, Process design,” Final Report to iCRco, 31 October 2013, property of iCRco, Goleta CA, unpublished.Google Scholar
Dong, L., Yue, R., and Liu, L., “Fabrication and characterization of integrated uncooled infrared sensor arrays using a-Si thin-film transistors as active elements,” J. Microelectromechanical Systems. 14, 5 (2005).Google Scholar
Wolfe, W. L. and Zissis, G. J., editors, The Infrared Handbook (Office of Naval Research, Arlington VA 1978), Chapter 11.Google Scholar
Abouelkhair, H., Figueiredo, P. N., Calhoun, S. R., Fredricksen, C. J., Oladeji, I. O., Smith, E. M., Cleary, J. W., and Peale, R. E., “Ternary lead-chalcogenide room-temperature mid-wave infrared detectors grown by spray-deposition,” MRS Advances. 3, 291 (2018).CrossRefGoogle Scholar
Dhakal, Nagendra, Calhoun, Seth, Peale, Robert E., and Khondaker, Saiful, “Spray-Deposited CdS/PbS Solar Cells,” Materials Research Society Fall Meeting 2018, Boston MA, abstract and poster presentation number ET11.12.26.Google Scholar
Weng, B., Qiu, J., Zhao, L., Chang, C., and Shi, Z., “CdS/PbSe heterojunction for high temperature mid-infrared photovoltaic detector applications,” Appl. Phys. Lett. 104, 121111 (2014).CrossRefGoogle Scholar
Watanabe, S. and Mita, Y., “Electrical Properties of CdS-PbS Heterojunctions,” Solid-State Electronics. 15, 5 (1972).CrossRefGoogle Scholar
Bhandari, K. P., Roland, P. J., Mahabaduge, H., Haugen, N. O., Grice, C. R., Jeong, S., Dykstra, T., Gao, J., and Ellingson, R. J., “Thin film solar cells based on the heterojunction of colloidal PbS quantum dots with CdS,” Solar Energy Materials & Solar Cells. 117, 476 (2013).CrossRefGoogle Scholar
Yeon, D. H., Mohanty, B. C., Lee, S. M., and Cho, Y. S., “Effect of band-aligned double absorber layers on photovoltaic characteristics of chemical bath deposited PbS/CdS thin film solar cells,” Sci. Rep. 5, 14353 (2015).CrossRefGoogle Scholar
Peale, R. E., Calhoun, S., Dhakal, N., Oladeji, I. O., and González, F. J., “Spray-on thermoelectric energy harvester,” MRS Advances. 4, 851 (2019).Google Scholar
Smith, R. A., Semiconductors, 2nd ed. (Cambridge University, 1978).Google Scholar
Pierret, R. F., Semiconductor device fundamentals (Addison-Wesley, Reading, 1996), pp. 477-501.Google Scholar
Anderson, R. L., “Germanium-Gallium Arsenide Heterojunctions, Lett,” IBM J. Res. Dev. 4, 3 (1960).CrossRefGoogle Scholar
Kindig, N. B. and Spicer, W. E., “Band Structure of Cadmium Sulfide—Photoemission Studies,” Phys. Rev. 138, A561 (1965).CrossRefGoogle Scholar
Oman, R. M. and Priolo, M. J., “Photoelectric Properties of Lead Sulfide near the Threshold Region,” J. Appl. Phys. 37, 524 (1966).Google Scholar
Khallaf, H., Chai, G., Lupan, O., Chow, L., Park, S, and Schulte, A., “Investigation of aluminium and indium in situ doping of chemical bath deposited CdS thin films,” J. Phys. D: Appl. Phys. 41, 185304 (2008).CrossRefGoogle Scholar
Peale, R. E., Smith, E., Abouelkhair, H., Oladeji, I. O., Vangala, S., Cooper, T., Grzybowski, G., Khalilzadeh-Rezaie, F., and Cleary, J. W., “Electrodynamic properties of aqueous spray deposited SnO2:F films for infrared plasmonics,” Opt. Eng. 56, 037109 (2017).CrossRefGoogle Scholar
Sagadevan, S. and Sundaram, A. S., “Dielectric properties of lead sulphide thin films for solar cell applications,” Chalcogenide Lett. 11, 159 (2014).Google Scholar
Strasfeld, D. B., Dorn, A., Wanger, D. D., and Bawendi, M. G., “Imaging Schottky Barriers and Ohmic Contacts in PbS Quantum Dot Devices,” Nano Lett. 12, 569 (2012).CrossRefGoogle ScholarPubMed
Drummond, Timothy J., “Work Functions of the Transition Metals and Metal Silicides, Sandia National Laboratories,” Report Number SAND99-0391J (1999).Google Scholar
Wilson, R. G., “Vacuum Thermionic Work Functions of Polycrystalline Be, Ti, Cr, Fe, Ni, Cu, Pt, and Type 304 Stainless Steel,” J. Appl. Phys. 37, 2261 (1966).CrossRefGoogle Scholar