Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-22T20:41:00.912Z Has data issue: false hasContentIssue false

Sponge and graphene/PVDF /ZnO composite based 3D stacked flexible multi-sensor platform

Published online by Cambridge University Press:  27 December 2016

Parikshit Sahatiya
Affiliation:
Department of Electrical Engineering, Indian Institute of Technology Hyderabad, Hyderabad 502285, India.
P Thanga Gomathi
Affiliation:
Department of Electrical Engineering, Indian Institute of Technology Hyderabad, Hyderabad 502285, India.
S Solomon Jones
Affiliation:
Department of Electrical Engineering, Indian Institute of Technology Hyderabad, Hyderabad 502285, India.
Sushmee Badhulika*
Affiliation:
Department of Electrical Engineering, Indian Institute of Technology Hyderabad, Hyderabad 502285, India.
*
*Corresponding author: E-mail: [email protected]; Telephone: 040-23018443 Fax 04023016032
Get access

Abstract

In this work, we propose a multi-sensor platform where sensors are stacked over one another (3D stacked) each offering a unique functionality. The technique involves the use of Polyurethane (PU) sponge and PVDF/graphene (Gr) /ZnO composites for various sensing applications. The sponge was made conductive by dipping it in different weight percentages of pencil lead dispersed in ethanol through ultrasonication. Large area Gr/PVDF films were fabricated by simple solution mixing and casting method which also served as a substrate for the 3D stacked sensor. ZnO was grown hydrothermally over Gr/PVDF film by masking a portion of Gr/PVDF film to form a p-n junction. Silver paste and copper tape were used as contact pads. All the three fabricated devices were stacked with PU sponge sandwiched between Gr/PVDF/ZnO (top) and large area Gr/PVDF (bottom) as substrate. Performance of individual sensors and 3D stacked sensor was compared and no notable change was observed. The 3D stacked sensor array platform with its multifunctionality would be a step ahead in wearable electronics which can be integrated on human and can function as an e-skin for burn and acid victims, robotics and human-machine interactions.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Nathan, A., Ahnood, A., Cole, M.T., Lee, S., Suzuki, Y., Hiralal, P., & Haque, S., Proc. IEEE. 14861517 (2012)CrossRefGoogle Scholar
Campbell, M. G, Liu, S. F, Swager, T. M., & Dincă, M., J. Am. Chem. Soc. 137(43), 1378013783 (2015).CrossRefGoogle Scholar
Yang, W., Wan, P., Jia, M., Hu, J., Guan, Y., & Feng, L., Biosens. Bioelectron. 64, 547553 (2015).CrossRefGoogle Scholar
Sahatiya, P., Puttapati, S.K., Srikanth, V.V., & Badhulika, S., Flexible Printed Electron. 1(2), 025006 (2016).CrossRefGoogle Scholar
Nassar, J.M., Cordero, M.D., Kutbee, A.T., Karimi, M.A., Sevilla, G.A.T., Hussain, A. M., & Hussain, M.M.. Advanced Materials Technologies. 1, 1 (2016).CrossRefGoogle Scholar
Hsueh, H.T., Lai, L.T., Juan, Y.M., Huang, S.W, Cheng, T.C., & Lin, Y.D., RSC Adv. 6(100), 9797697982 (2016)CrossRefGoogle Scholar
Fang, Q., Shen, Y., & Chen, B.. Chem. Eng. J, 264, 753771 (2015)CrossRefGoogle Scholar
Chabot, V., Higgins, D., Yu, A., Xiao, X., Chen, Z., & Zhang, J.., Energy Environ. Sci. 7(5), 15641596, (2014).CrossRefGoogle Scholar
Zheng, G. P., Jiang, Z. Y., Han, Z., & Yang, J. H.., eXPRESS Polym. Lett, 10(9), 730741 (2016).CrossRefGoogle Scholar
Hewitt, C. A., Kaiser, A. B., Craps, M., Czerw, R., Roth, S., & Carroll, D. L.., Synth Met. 165, 5659 (2013).CrossRefGoogle Scholar
Lu, C., Zhang, L., Xu, C., Yin, Z., Zhou, S., Wang, J., Huang, R., Zhou, X., Zhang, C., Yang, W. & Lu, J.., RSC Adv. 6, 6740067408 (2016).CrossRefGoogle Scholar
Eswaraiah, V., Balasubramaniam, K., & Ramaprabhu, S., J. Mater. Chem., 21(34), 1262612628 (2011).CrossRefGoogle Scholar
Xiao, P., Yi, N., Zhang, T., Huang, Y., Chang, H., Yang, Y., & Chen, Y.. Advanced Science (2016).Google Scholar
Li, W., Gao, G. S., Li, L., Jiao, S., Li, H., Wang, J., Yu, Q., Zhang, Y., Wang, D., and Zhao, L.., Chem. Commun., 52, 82318234, (2016).CrossRefGoogle Scholar
Manekkathodi, A., Lu, M.Y., Wang, C.W., & Chen, L.J.. Adv. Mater., 22(36), 40594063 (2010)CrossRefGoogle Scholar
Sahatiya, P. & Badhulika, S.., RSC Adv., 5, 8248182487, (2015).CrossRefGoogle Scholar
Liu, S., Liao, Q., Lu, S., Zhang, Z., Zhang, G., & Zhang, Y.. Adv. Funct. Mater. 26(9), 13471353 (2016)CrossRefGoogle Scholar
Kumar, M.H., Yantara, N., Dharani, S., Graetzel, M., Mhaisalkar, S., Boix, P.P., & Mathews, N., Chem. Commun., 49(94), 1108911091 (2013).CrossRefGoogle Scholar
Dai, Z., Weng, C., Liu, L., Hou, Y., Zhao, X., Kuang, J. & Zhang, Z., Sci. Rep., 6 (2016).Google Scholar
Pimenta, M.A.., Dresselhaus., G., Dresselhaus., M.S., Cancado, L.G., Jorio, A. & Saito, R., Phys. Chem. Chem. Phys., 9(11), 12761290, (2007).CrossRefGoogle Scholar
Dinh, T., Phan, H.P., Dao, D.V., Woodfield, P., Qamar, A. & Nguyen, N.T., J. Mater. Chem. C, 3(34), 87768779, (2015).CrossRefGoogle Scholar
Cancado, L.G., Takai, K., Enoki, T., Endo, M., Kim, Y.A., Mizusaki, H., Pimenta, M.A., Appl. Phys. Lett., 88(16), 163106–163106, (2006).CrossRefGoogle Scholar
Eggedi, O., Valiyaneerilakkal, U., Darla, M.R. & Varghese, S., AIP Adv., 4(4), 047102, (2014).CrossRefGoogle Scholar
Jurczuk, K., Galeski, A., Mackey, M., Hiltner, A. & Baer, E., Colloid. Polym. Sci., 293(4), 12891297, (2015).CrossRefGoogle Scholar
Shimizu, H., Arioka, Y., Ogawa, M., Wada, R. & Okabe, M., Polym J, 43(6), 540544, (2011).CrossRefGoogle Scholar
Li, Z.H., Zhang, H.P., Zhang, P., Li, G.C., Wu, Y.P. & Zhou, X.D., J. Membr. Sci., 322(2), 416422, (2008).CrossRefGoogle Scholar
Theerthagiri, J., Senthil, R.A., Buraidah, M.H., Madhavan, J. & Arof, A.K., Ionics, 21(10), 28892896, (2015).CrossRefGoogle Scholar