Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-17T15:07:15.020Z Has data issue: false hasContentIssue false

Solution Process Feasible Highly Efficient Organic Light Emitting Diode with Hybrid Metal Oxide Based Hole Injection/Transport Layer

Published online by Cambridge University Press:  15 July 2019

Mangey Ram Nagar
Affiliation:
Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
Rohit Ashok Kumar Yadav
Affiliation:
Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
Deepak Kumar Dubey
Affiliation:
Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
Jwo-Huei Jou*
Affiliation:
Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
*
Get access

Abstract

Organic light emitting diodes (OLEDs) have drawn great attention owing to their potential applications in high-quality flat display panels and smart solid-state lighting. Over the last three decades, numerous approaches have been made on material design and device physics to achieve high-efficiency and long-lifespan. Herein, we report a novel tactic to employ solution-processed hybrid metal oxide, molybdenum trioxide-tungsten trioxide (MoO3:WO3), as an efficient and stable hole injection/transport (HIL/HTL) and electron blocking layer for efficient OLEDs. By using phosphorescent orange-red emitter tris(2-phenylquinoline)-iridium(III) Ir(2-phq)3, MoO3:WO3 HIL based OLED device exhibits a power efficiency of 27.7 lm W-1 and 22.9 lm W-1 at 100 and 1000 cd m-2, respectively, which are 89% and 157% higher than that of conventional OLED device consisting of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) as an HIL. Moreover, the resulted device also displays 1.6 times lower turn-on voltage and 3.0 time higher brightness as compare to other counter part. The higher device performances of OLED device may be attributed to robust hole transporting ability, balanced charge carrier in the recombination zone and non-acidic nature of designed HIL. Our results demonstrate that a novel alternative approach based on transition metal oxide hybrid HIL/HTL as a substitute to PEDOT:PSS for high-efficiency solution process OLEDs.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Geffroy, B., Roy, P. L. and Prat, C., Polymer International 55, 572-582 (2006).CrossRefGoogle Scholar
Tang, C. W. and VanSlyke, V. A., Appl. Phys. Lett. 51, 913-915 (1987).CrossRefGoogle Scholar
Yokoyama, D., J. Mater. Chem. 21, 19187-19198 (2011).CrossRefGoogle Scholar
Baldo, M. A., Obrien, D. F., You, Y., Shoustikov, A., Sibley, S., Thompson, M. E. and Forrest, S. R., Nature 395, 151-154 (1998).CrossRefGoogle Scholar
Jou, J. H., Kumar, S., Agrawal, A., Lia, T. H. and Sahoo, S., J. Mater. Chem. C 3, 2974-3002 (2015).CrossRefGoogle Scholar
Baldo, M. A., Deutsch, M., Burrows, P., Gossenberger, H., Gerstenberg, M., Ban, V. and Forrest, S., Adv. Mater. 10, 1505-1514 (1998).3.0.CO;2-G>CrossRefGoogle Scholar
Jou, J. H., Sahoo, S., Dubey, D. K., Yadav, R. A. K., Sujith, S. S. and Chavhan, S. D., J. Mater. Chem. C 6, 11492-11518 (2018).CrossRefGoogle Scholar
Jou, J. H., Shen, S. M., Chen, S. H., Wu, M. H., Wang, W., Wang, H. C., Lin, C. R., Chou, Y., Wu, P. H. and Shyue, J. J., Applied Physics Letters 96, 143306-143308 (2010).CrossRefGoogle Scholar
Yang, W. Y., Yadav, R. A. K., Dubey, D. K., Hsu, C. H., Lee, Y., Liang, T. W. and Jou, J. H., International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD), Kyoto, 18, 1-4 (2018).Google Scholar
Liu, S., Liu, R., Chen, Y., Ho, S. and Kim, J. H., Chemistry of Materials 26, 4528-4534 (2014).CrossRefGoogle Scholar
Zhang, H., Fu, Q., Zeng, W. and Ma, D., J. Mater. Chem. C 2, 9620-9624 (2014).CrossRefGoogle Scholar
Li, Y. H., Lu, X., Wang, R., Yang, Y., Duhm, S. and Fung, M. K., J. Mater. Chem. C 5, 11751-11757 (2017).CrossRefGoogle Scholar
Chavhan, S. D., Ou, T. H., Jiang, M. R., Wang, C. W. and Jou, J. H., J. Phys. Chem. C 122, 18836-18840 (2018).CrossRefGoogle Scholar
Yadav, R., Naebe, M., Wang, X. and Kandasubramanian, B., Scientific Reports 6, 29917-29925 (2017).CrossRefGoogle Scholar
Jou, J. H., Peng, S. H., Chiang, C. I., Chen, Y. L., Lin, Y. X., Jou, Y. C., Chen, C. H., Li, C. J., Wang, W., Shen, S. M., Chen, S., Wei, M. K., Sun, Y. S., Hung, H. W., Liu, M. C., Lin, Y. P., Li, J. Y. and Wang, C. W., J. Mater. Chem. C 1, 1680-1686 (2013).CrossRefGoogle Scholar
Wang, L., Lv, Y., Jie, L., Fan, Y., Zhao, J., Wang, Y. and Liu, X., Nanoscale 9, 6748-6754 (2017).CrossRefGoogle ScholarPubMed
Jou, J. H., Kumar, S., Singh, M., Chen, Y. H., Chen, C. C. and Lee, M. T., Molecules 20, 13005-13030 (2015).CrossRefGoogle Scholar
Perumal, A., Faber, H., Gross, N. Y., Pattanasattayavong, P., Burgess, C., Jha, S., Lachlan, M. A. M., Stavrinou, P. N., Thomas, D. A. and Bradley, D. C., Adv. Mater. 27, 93-10 (2015).CrossRefGoogle Scholar
Dubey, D.K., Shahoo, S., Wang, C.W. and Jou, J.H., Organic Electronics 69, 232-240 (2019).CrossRefGoogle Scholar