Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-26T07:04:47.587Z Has data issue: false hasContentIssue false

Solubility of Hydrogen and Vacancy Concentration in Nickel from First Principles Calculations

Published online by Cambridge University Press:  13 January 2016

Arnaud Metsue*
Affiliation:
Laboratoire des Sciences de l’Ingénieur pour l’Environnement, UMR CNRS 7356 Université de La Rochelle , Avenue Michel Crépeau, 17000 La Rochelle, France
Abdelali Oudriss
Affiliation:
Laboratoire des Sciences de l’Ingénieur pour l’Environnement, UMR CNRS 7356 Université de La Rochelle , Avenue Michel Crépeau, 17000 La Rochelle, France
Xavier Feaugas
Affiliation:
Laboratoire des Sciences de l’Ingénieur pour l’Environnement, UMR CNRS 7356 Université de La Rochelle , Avenue Michel Crépeau, 17000 La Rochelle, France
*
Get access

Abstract

The hydrogen solubility and the vacancy concentration in Ni single crystals at thermal equilibrium with a H2 gas have been determined from a combination of first principles calculations and statistical mechanics up to the melting point. We show that the H solubility increases and the vacancy formation is promoted at high PH2. The apparent solution enthalpy and entropy are extracted from the fit of the solubility with the Sieverts’s law. We show that our results are in good agreement with previous experimental data at PH2=1 bar. The vacancy concentration increases with PH2 whatever the temperature but the effect of H is more significant at low temperature. However, the vacancy concentration and the H solubility in single crystals remain small and a comparison with the experimental data on polycrystals indicates that the grain boundaries may play the most important source of superabundant vacancies and preferential sites for H incorporation.

Keywords

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Fukai, Y., Shizuku, Y., and Kurokawa, Y., J. Alloys Comp. 329, 195 (2001).Google Scholar
Takai, K., Shoda, H., Suzuki, H., and Nagumo, M., Acta Mater. 56, 5158 (2008).Google Scholar
Nagumo, M., Ohta, K., and Saitoh, H., Scripta Mater. 40, 313 (1999).Google Scholar
Connétable, D., Wang, Y., and Tanguy, D., J. Alloys Comp. 614, 211 (2014).Google Scholar
Metsue, A., Oudriss, A., Bouhattate, J., and Feaugas, X., J. Chem. Phys. 140, 104705 (2014).CrossRefGoogle Scholar
Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G. L., Cococcioni, M., Dabo, I., Corso, A. D., Fabris, S., Fratesi, G., de Gironcoli, S., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., Martin-Samos, L., Marzari, N., Mauri, F., Mazzarello, R., Paolini, S., Pasquarello, A., Paulatto, L., Sbraccia, C., Scandolo, S., Sclauzero, G., Seitsonen, A. P., Smogunov, A., Umari, P., and Wentzcovitch, R. M., J. Phys.: Cond. Matt. 21, 395502 (2009).Google Scholar
Kresse, G., Joubert, D., Phys. Rev. B 59, 1758 (1999).Google Scholar
Perdew, J. P., Burke, K., and Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1996).Google Scholar
Metsue, A., Oudriss, A., and Feaugas, X., J. Alloys Comp. 656, 555 (2016).Google Scholar
Metsue, A., Oudriss, A., and Feaugas, X., Philosophical Magazine 94, 3978 (2014).Google Scholar
Stafford, S. W. and McLellan, R. B., Acta Metall. 22, 1463 (1974).Google Scholar
Eichenauer, W., Loeser, W., and Witte, H., Z. Metallk. 56, 287 (1965).Google Scholar
Fukai, Y., The Metal-Hydrogen System: Basic Bulk Properties (Springer-Verlag, Berlin, 2006).Google Scholar
Harada, S., Yokota, S., Ishii, Y., Shizuku, Y., Kanazawa, M., and Fukai, Y., J. Alloys Comp. 404-406, 247 (2005).Google Scholar