Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-23T13:11:43.808Z Has data issue: false hasContentIssue false

Sio2 and Al2O3 nanoparticles effect on the microstructure and mechanical properties of the weld bead joining AISI 1025 steel plates

Published online by Cambridge University Press:  09 November 2018

A. Jiménez-Jiménez*
Affiliation:
Sección de Estudios de Posgrado e Investigación, Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, 07738, CDMX, México.
A. M. Paniagua-Mercado
Affiliation:
Sección de Estudios de Posgrado e Investigación, Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, 07738, CDMX, México.
A. García-Bórquez
Affiliation:
Sección de Estudios de Posgrado e Investigación, Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, 07738, CDMX, México.
V. M. López-Hirata
Affiliation:
Depto. Ingeniería en Metalurgia y Materiales, Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional, 07738, CDMX, México.
A. S. De Ita-De la Torre
Affiliation:
Depto. Materiales, Universidad Autónoma Metropolitana-Azcapotzalco, 02200, CDMX, México.
E. Miguel-Díaz
Affiliation:
Div. Ingeniería Industrial y Forestal, Instituto Tecnológico Superior de la Sierra Norte de Puebla, 73310, Zacatlán, México.
M. L. Saucedo-Muñoz
Affiliation:
Depto. Ingeniería en Metalurgia y Materiales, Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional, 07738, CDMX, México.
*
*Corresponding author: [email protected]
Get access

Abstract

The purpose of this work is to study the effect of SiO2- and Al2O3-NPs on the microstructure and mechanical properties of the weld bead (WB) created by a process of Submerged Arc Welding (SAW) between two AISI 1025 steel plates. Also it was necessary consider the chemical compositions of slags and burned fluxes, in order to determine the elements that are deposited and contribute in the final microstructure of WB. The welding materials to form each WB were a M12K electrode, a commercial fused flux (CFF) and AISI 1025 steel plates bevelled at 45°. In addition SiO2- or Al2O3-NPs an ethylic alcohol mixture were applied directly to the beveled surfaces, just before the SAW process, which was carried out according to the AWS A5.17 norm. Microstructural and phase changes at the Heat Affected Zone (HAZ) and Welding Zone (WZ) were analysed by metallographic Optical and Scanning Electron Microscopies. The mechanical properties of the WBs were determined through Tensile, Charpy impact and Vickers Hardness tests. By means of metallography of WBs, it was determined that the length of the AF needles increases in 113 and 183 % when adding SiO2- or Al2O3-NPs, respectively. Related to the mechanical properties of the WB, the tensile and yield strength decreases with both additions, SiO2- or Al2O3-NPs. The microhardness at WZ was found to decrease by adding such oxide-NPs. Moreover, the impact energy absorbed by the WBs increases approximately by 83 or 57% due to SiO2- or Al2O3-NPs addition, respectively.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References:

Xiong, Z., Liu, S., Wang, X., Shang, C., Li, X. and Misra, R. D. K., Mater. Sci. Eng. C. 636, 17-123 (2015).Google Scholar
Eroğlu, M., Aksoy, M. and Orhan, N., Mater. Sci. Eng. A. 269, 59-66 (1999).CrossRefGoogle Scholar
Eroğlu, M. and Aksoy, M., Mater. Sci. Eng. A. 286, 289-297 (2000).CrossRefGoogle Scholar
Ohkita, S., Homma, H., Tsushima, S. and Mori, N., Aust. Weld. J. 23-36 (1984).Google Scholar
Jang, J. and Indacochea, J. E., J. Mater. Sci. 22 , 689700 (1987).CrossRefGoogle Scholar
Zhi-Min, , Li-Guang, , Yuang-Liang, and Qing-Ju, J. Iron & Steel Res. Int. 23 (6): 586-592 (2016).Google Scholar
Chen, C., Xue, H., Peng, H., Yan, L., Zhi, L. and Wang, S., J. Nanomater. 2014, (2014).Google Scholar
Aghakhani, M., Ghaderi, M. R., Karami, A. and Derakhshan, A., Int. J. Adv. Manuf. Technol. 70, 1-4 (2014).CrossRefGoogle Scholar
Paniagua-Mercado, A. M., Lopez-Hirata, V. M., Dorantes-Rosales, H. J., Estrada Diaz, P., and Diaz Valdez, E., Mater. Charact. 60, 3639, 2009.CrossRefGoogle Scholar
Paniagua-Mercado, A. M., López-Hirata, V. M. and Saucedo-Muñoz, M., J. Mater. Process. Technol. 169, 346-351 (2005).CrossRefGoogle Scholar
Paniagua-Mercado, A. M., Estrada-Díaz, P. and López-Hirata, V. M., J. Mater. Process. Technol. 141, 93-100 (2003).CrossRefGoogle Scholar