Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-23T07:45:36.964Z Has data issue: false hasContentIssue false

Single-trap kinetic in Si nanowire FETs: effect of gamma radiation treatment

Published online by Cambridge University Press:  16 May 2016

I. Zadorozhnyi
Affiliation:
Peter Grünberg Institute (PGI-8), Forschungszentrum Jülich, 52425 Jülich, Germany
J. Li
Affiliation:
Peter Grünberg Institute (PGI-8), Forschungszentrum Jülich, 52425 Jülich, Germany
S. Pud
Affiliation:
Peter Grünberg Institute (PGI-8), Forschungszentrum Jülich, 52425 Jülich, Germany
M. Petrychuk
Affiliation:
Peter Grünberg Institute (PGI-8), Forschungszentrum Jülich, 52425 Jülich, Germany Radiophysics Faculty, Taras Shevchenko National University Kyiv, 03022 Kyiv, Ukraine
S. Vitusevich*
Affiliation:
Peter Grünberg Institute (PGI-8), Forschungszentrum Jülich, 52425 Jülich, Germany
*
*Corresponding author. E-mail: [email protected]. On leave from Institute of Semiconductor Physics, NASU, Kyiv, Ukraine.
Get access

Abstract

Here we report on the effect of gamma radiation treatment on transport properties and single-trap kinetics in Si nanowire (NW) field effect transistor (FET) structures. We used noise spectroscopy as a powerful method for advanced physical characterization of nanoscale devices. Our results demonstrate that transport properties of NW FETs can be changed using small doses of gamma radiation treatment. We reveal an enhancement of the gate coupling effect, which is explained as a result of the reorganization of the native defect structure after treatment. The radiation treatment approach allows the single-trap dynamic to be changed, which opens up prospects for a number of fundamental studies and applications of Si NW FET device structures, including biosensors.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Patolsky, F. and Lieber, C.M., Mater. Today 8, 20 (2005).Google Scholar
Xiao, M. et al. Nature 430, 435 (2004).Google Scholar
Li, J. et al. Nano Lett. 14, 3504 (2014).Google Scholar
Pud, S. et al. Nano Lett. 14, 578 (2014).Google Scholar
Lukyanchikova, N. et al. J. Appl. Phys. 98, 114506 (2005).Google Scholar
Lim, H.-K. and Fossum, J.G., IEEE Trans. Electron Devices 30, 1244 (1983).Google Scholar
Li, J. et al. Nanotechnology 25, 275302 (2014).Google Scholar
Theodorou, C.G. et al. Eur. Solid-State Device Res. Conf. 2, 334 (2012).Google Scholar
Shockley, W. and Read, W.T., Phys. Rev. 87, 835 (1952).Google Scholar
Schulz, M., J. Appl. Phys. 74, 2649 (1993);H. Mueller et al.J. Appl. Phys. 75, 2970 (1994).CrossRefGoogle Scholar