Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-19T05:38:04.819Z Has data issue: false hasContentIssue false

Silver Chlorobromide Nanocubes: A Class of Reactive Templates for Synthesizing Nanoplates and Nanocages of Silver Thiolates

Published online by Cambridge University Press:  29 April 2019

Sasitha C. Abeyweera
Affiliation:
Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, PA19122, U.S.A.
Yugang Sun*
Affiliation:
Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, PA19122, U.S.A.
*
*Corresponding author. Email: [email protected]
Get access

Abstract

Uniform silver chlorobromide nanocubes have been used to regulate the availability of an extremely low concentration of Ag+ that react with different thiol molecules to form silver thiolate nanoplates with high controllability. The sacrificial silver chlorobromide nanocubes also serve as templates to provide surface nucleation sites for forming the silver thiolate nanoplates, which grow against the surfaces of the nanocubes to organize into nanocages upon the consumption of the entire nanocubes. The precise regulation of the extremely low concentration of Ag+ prevents the uncontrolled fast reaction with thiol molecules and the formation of irregular silver thiolate particles. This method represents a versatile strategy to control the reaction rate of fast reactions involving in the synthesis of colloidal nanoparticles, thus enabling the synthesis of uniform nanoparticles with desirable parameters.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Massote, D. V. P., and Mazzoni, M. S.C., Appl. Phys. Lett. 109, 133104 (2016).CrossRefGoogle Scholar
Dong, R., Zheng, Z., Tranca, D. C., Zhang, J., Chandrasekhar, N., Liu, S., Zhuang, X., Seifert, G., and Feng, X., Chem. Eur. J. 23, 2255 (2017).CrossRefGoogle Scholar
Campbell, M. G., Sheberla, D., Liu, S. F., Swager, T. M., and Dincă, M., Angew. Chem. Int. Ed. 54, 4349 (2015).CrossRefGoogle Scholar
Choi, W., Lahiri, I., Seelaboyina, R., and Kang, Y. S., Crit. Rev. Solid State Mater. Sci. 35, 52 (2010).CrossRefGoogle Scholar
Srivastava, N., He, Luxmi, G., Mende, P. C., Feenstra, R. M., and Sun, Y., J. Phys. Appl. Phys. 45, 154001 (2012).CrossRefGoogle Scholar
Ji, Y., Wei, Q., and Sun, Y., Ind. Eng. Chem. Res. 57, 4571 (2018).CrossRefGoogle Scholar
Manzeli, S., Ovchinnikov, D., Pasquier, D., Yazyev, O. V., and Kis, A., Nat. Rev. Mater. 2, 17033 (2017).CrossRefGoogle Scholar
Rasamani, K. D., Alimohammadi, F., and Sun, Y., Mater. Today. 20, 83 (2017).CrossRefGoogle Scholar
Gao, M. R., Chan, M. K. Y., and Sun, Y., Nat. Commun. 6, 7493 (2015).CrossRefGoogle Scholar
Low, T., Chaves, A., Caldwell, J. D., Kumar, A., Fang, N. X., Avouris, P., Heinz, T. F., Guinea, F., Martin-Moreno, L., and Koppens, F., Nat. Mater. 16, 182 (2017).CrossRefGoogle Scholar
Anasori, B., Lukatskaya, M. R., and Gogotsi, Y., Nat. Rev. Mater. 2, 16098 (2017).CrossRefGoogle Scholar
Attanayake, N. H., Abeyweera, S. C., Thenuwara, A. C., Anasori, B., Gogotsi, Y., Sun, Y., and Strongin, D. R., J. Mater. Chem. A 6, 16882 (2018).CrossRefGoogle Scholar
Love, J. C., Estroff, L. A., Kriebel, J. K., Nuzzo, R. G., and Whitesides, G. M., Chem. Rev. 105, 1103 (2005).CrossRefGoogle Scholar
Bensebaa, F., Ellis, T. H., Kruus, E., Voicu, R., and Zhou, Y., Langmuir. 14, 6579 (1998).CrossRefGoogle Scholar
Levchenko, A. A., Yee, C. K., Parikh, A. N., and Navrotsky, A., Chem. Mater. 17, 5428 (2005).CrossRefGoogle Scholar
Dance, I. G., Polyhedron. 5, 1037 (1986).CrossRefGoogle Scholar
Dance, I. G., Fisher, K. J., Banda, R. M. H., and Scudder, M. L., Inorg. Chem. 30, 183 (1991).CrossRefGoogle Scholar
Parikh, A. N., Gillmor, S. D., Beers, J. D., Beardmore, K. M., Cutts, R. W., and Swanson, B. I., J. Phys. Chem. B. 103, 2850 (1999).CrossRefGoogle Scholar
Andersson, L. -O., J. Polym. Sci. [A1]. 10, 1963 (1972).CrossRefGoogle Scholar
Ye, Z., de la Rama, L. P., Efremov, M. Y., Zuo, J. -M., and Allen, L. H., Dalton Trans . 45, 18954 (2016).CrossRefGoogle Scholar
Hu, L., de la Rama, L. P., Efremov, M. Y., Anahory, Y., Schiettekatte, F., and Allen, L. H., J. Am. Chem. Soc. 133, 4367 (2011).CrossRefGoogle Scholar
Hu, L., Zhang, Z., Zhang, M., Efremov, M., Olson, E. A., de la Rama, L. P., Kummamuru, R. K., and H Allen, L., Langmuir ACS J. Surf. Colloids. 25, 9585 (2009).CrossRefGoogle Scholar
Abeyweera, S. C., Rasamani, K. D., and Sun, Y., Acc. Chem. Res. 50, 1754 (2017).CrossRefGoogle Scholar
Li, Z., Okasinski, J. S., Gosztola, D. J., Ren, Y., and Sun, Y., J. Mater. Chem. C 3, 58 (2015).CrossRefGoogle Scholar
Abeyweera, S. C., and Sun, Y., Mater. Chem. Front. 1, 1534 (2017).CrossRefGoogle Scholar
Wang, D., "Flotation Reagents: Applied Surface Chemistry on Minerals Flotation and Energy Resources Beneficiation: Volume 2: Applications," (Springer, Singapore, 2016) pp. 8081.Google Scholar
Andonovic, B., Temkov, M., Ademi, A., Petrovski, A., Grozdanov, A., Paunović, P., and Dimitrov, A., J. Chem. Technol. Metall. 49, 545 (2014).Google Scholar