Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-22T14:23:43.993Z Has data issue: false hasContentIssue false

Showerhead-Assisted Chemical Vapor Deposition of Perovskite Films for Solar Cell Application

Published online by Cambridge University Press:  24 February 2020

S. Sanders*
Affiliation:
Compound Semiconductor Technology, RWTH Aachen University, Sommerfeldstr. 18, 52074 Aachen, Germany
D. Stümmler
Affiliation:
Compound Semiconductor Technology, RWTH Aachen University, Sommerfeldstr. 18, 52074 Aachen, Germany
J. D. Gerber
Affiliation:
Compound Semiconductor Technology, RWTH Aachen University, Sommerfeldstr. 18, 52074 Aachen, Germany
J. H. Seidel
Affiliation:
Compound Semiconductor Technology, RWTH Aachen University, Sommerfeldstr. 18, 52074 Aachen, Germany
G. Simkus
Affiliation:
Compound Semiconductor Technology, RWTH Aachen University, Sommerfeldstr. 18, 52074 Aachen, Germany AIXTRON SE, Dornkaulstr. 2, 52134 Herzogenrath, Germany
M. Heuken
Affiliation:
Compound Semiconductor Technology, RWTH Aachen University, Sommerfeldstr. 18, 52074 Aachen, Germany AIXTRON SE, Dornkaulstr. 2, 52134 Herzogenrath, Germany
A. Vescan
Affiliation:
Compound Semiconductor Technology, RWTH Aachen University, Sommerfeldstr. 18, 52074 Aachen, Germany
H. Kalisch
Affiliation:
Compound Semiconductor Technology, RWTH Aachen University, Sommerfeldstr. 18, 52074 Aachen, Germany
*
Get access

Abstract

In the last years, perovskite solar cells have attracted great interest in photovoltaic (PV) research due to their possibility to become a highly efficient and low-cost alternative to silicon solar cells. Cells based on the widely used Pb-containing perovskites have reached power conversion efficiencies (PCE) of more than 20 %. One of the major hurdles for the rapid commercialization of perovskite photovoltaics is the lack of deposition tools and processes for large areas. Chemical vapor deposition (CVD) is an appealing technique because it is scalable and furthermore features superior process control and reproducibility in depositing high-purity films. In this work, we present a novel showerhead-based CVD tool to fabricate perovskite films by simultaneous delivery of precursors from the gas phase. We highlight the control of the perovskite film composition and properties by adjusting the individual precursor deposition rates. Providing the optimal supply of precursors results in stoichiometric perovskite films without any detectable residues.

Type
Articles
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Yang, W. S., Park, B.-W., Jung, E. H., Jeon, N. J., Kim, Y. C., Lee, D. U., Shin, S. S., Seo, J., Kim, E. K., Noh, J. H., and Seok, S. I., Science 356, 1376 (2017).10.1126/science.aan2301CrossRefGoogle Scholar
Saliba, M., Matsui, T., Seo, J.-Y., Domanski, K., Correa-Baena, J.-P., Nazeeruddin, M. K., Zakeeruddin, S. M., Tress, W., Abate, A., Hagfeldt, A., and Grätzel, M., Energy Environ. Sci. 9, 1989 (2016).10.1039/C5EE03874JCrossRefGoogle Scholar
Cheng, Y., Xu, X., Xie, Y., Li, H.-W., Qing, J., Ma, C., Lee, C.-S., So, F., and Tsang, S.-W., Sol. RRL 1, 1700097 (2017).10.1002/solr.201700097CrossRefGoogle Scholar
NREL, Efficiency chart, Available at: https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20190923.pdf (accessed 23. October 2019).Google Scholar
Swartwout, R., Hoerantner, M. T. and Bulovic, V., Energy Environ. Mater. 2, 119 (2019).10.1002/eem2.12043CrossRefGoogle Scholar
Deng, Y., Peng, E., Shao, Y., Xiao, Z. and Dong, Q., Energy Environ. Sci. 8, 1544 (2015).10.1039/C4EE03907FCrossRefGoogle Scholar
Wei, Z., Chen, H., Yan, K. and Yang, S., Angew. Chem. Int. Ed. 53, 13239 (2014).10.1002/anie.201408638CrossRefGoogle Scholar
Roldan-Carmona, C., Malinkiewicz, O., Soriano, A., Minguez Espallargas, G., Garcia, A., Reinecke, P., Kroyer, T., Ibrahim Dar, M., Nazeeruddin, M. K. and Bolink, H. J., Energy. Environ. Sci. 7, 994 (2014).CrossRefGoogle Scholar
Leyden, M. R., Ono, L. K., Raga, S. R., Kato, Y., Wang, S. and Qi, Y., J. Mater. Chem. A 2, 18742 (2014).10.1039/C4TA04385ECrossRefGoogle Scholar
Shen, P.-S., Chen, J.-S., Chiang, Y.-H., Li, M.-H., Guo, T.-F. and Chen, P.. Adv. Mater. Inter. 3, 1500849 (2016).10.1002/admi.201500849CrossRefGoogle Scholar
Malinkiewicz, O., Yella, A., Hui Lee, Y., Minguez Espallargas, G., Graetzel, M., Nazeeruddin, M. K. and Bolink, H. J., Nature Photon 8, 128 (2014).10.1038/nphoton.2013.341CrossRefGoogle Scholar
Luo, P., Liu, Z., Xia, W., Yuan, C., Cheng, J. and Lu, Y., ACS Appl. Mater. Inter. 7, 2708 (2015).10.1021/am5077588CrossRefGoogle Scholar
Tavakoli, M. M., Gu, L., Gao, Y., Reckmeier, C., He, J., Rogach, A. L., Yao, Y. and Fan, Z., Sci. Rep. 5, 14083 (2015).10.1038/srep14083CrossRefGoogle Scholar
Pfeiffer, P., Beckmann, C., Stümmler, D., Sanders, S., Simkus, G., Heuken, M., Vescan, A. and Kalisch, H., Appl. Phys. Lett. 111, 243301 (2017).10.1063/1.5005615CrossRefGoogle Scholar
Sanders, S., Stümmler, D., Pfeiffer, P., Ackermann, N., Simkus, G., Heuken, M., Baumann, P. K., Vescan, A. and Kalisch, H., Sci. Rep., 9, 9774 (2019).CrossRefGoogle Scholar
Cao, D. H., Stoumpos, C. C., Malliakas, C. D., Katz, M. J., Farha, O. K., Hupp, J. T. and Kanatzidis, M. G., APL Mater. 2, 091101 (2014).10.1063/1.4895038CrossRefGoogle Scholar
Son, D.-Y., Lee, J.-W., Choi, Y. J., Jang, I.-H., Lee, S., Yoo, P. J., Shin, H., Ahn, N., Choi, M., Kim, D. and Park, N.-G., Nat. Energy 1, 16081 (2016).10.1038/nenergy.2016.81CrossRefGoogle Scholar
Halder, A., Choudhury, D., Ghosh, S., Subbiah, A. S. and Sarkar, S. K., J. Phys. Chem. Lett. 6, 3180 (2015).10.1021/acs.jpclett.5b01426CrossRefGoogle Scholar
Mohammed, S. I., Al-Douri, Y., Hashim, U., Ahmed, N. M. and Al-Gaashani, R., Can. J. Phys 91, 826 (2013).CrossRefGoogle Scholar
Zheng, L., Zhang, D., Ma, Y., Lu, Z., Chen, Z., Wang, S., Xiao, L. und Gong, Q., Dalton Trans. 44, 10582 (2015).10.1039/C4DT03869JCrossRefGoogle Scholar
Park, N.-G., CrystEngComm 18, 5977 (2016).10.1039/C6CE00813ECrossRefGoogle Scholar
Leguy, A. M. A., Azarhoosh, P., Alonso, M., Campoy-Quiles, M., Weber, O. J., Yao, H., Bryant, D., Weller, M. T., Nelson, J., Walsh, A., van Schilfgaarde, M. and Barnes, P. R. F., Nanoscale, 8, 6317 (2016).10.1039/C5NR05435DCrossRefGoogle Scholar
Ferreira da Silva, A., Veissid, N., An, C. Y., Pepe, I. and Barros de Oliveira, N., Appl. Phys. Lett. 69, 1930 (1996).10.1063/1.117625CrossRefGoogle Scholar
Gao, C., Liu, J., Liao, C., Ye, Q., Zhang, Y., He, X., Guo, X., Mei, J. and Lau, W., RSC. Adv. 5, 26175 (2015).10.1039/C4RA17316CCrossRefGoogle Scholar
Chen, J. and Park, N.-G., Adv. Mater. 1803019 (2018).Google Scholar