Article contents
Shape-Memory Actuation of Individual Micro-/Nanofibers
Published online by Cambridge University Press: 18 June 2020
Abstract
Advances in the fabrication and characterization of polymeric nanomaterials has greatly advanced the miniaturization of soft actuators, creating materials capable of replicating the functional physical behavior previously limited to the macroscale. Here, we demonstrate how a reversible shape-memory polymer actuation can be generated in a single micro/nano object, where the shape change during actuation of an individual fiber can be dictated by programming using an AFM-based method. Electrospinning was used to prepare poly(ε-caprolactone) micro-/nanofibers, which were fixed and crosslinked on a structured silicon wafer. The programming as well as the observation of recovery and reversible displacement of the fiber were performed by vertical three point bending, using an AFM testing platform introduced here. A plateau tip was utilized to improve the stability of the fiber contact and working distance, enabling larger deformations and greater rbSMPA performance. Values for the reversible elongation of εrev = 3.4 ± 0.1% and 10.5 ± 0.1% were obtained for a single micro (d = 1.0 ± 0.2 μm) and nanofiber (d = 300 ± 100 nm) in cyclic testing between the temperatures 10 and 60 °C. The reversible actuation of the nanofiber was successfully characterized for 10 cycles. The demonstration and characterization of individual shape-memory nano and microfiber actuators represents an important step in the creation of miniaturized robotic devices capable of performing complex physical functions at the length scale of cells and structural component of the extracellular matrix.
- Type
- Articles
- Information
- Copyright
- Copyright © Materials Research Society 2020
References
- 2
- Cited by