Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-23T10:57:36.906Z Has data issue: false hasContentIssue false

Shape-Memory Actuation of Individual Micro-/Nanofibers

Published online by Cambridge University Press:  18 June 2020

Yue Liu
Affiliation:
Institute of Biomaterial Science, Helmholtz-Zentrum Geesthacht, Kantstr. 55, 14513Teltow, Germany Institute of Chemistry, University of Potsdam, 14476Potsdam, Germany
Oliver E. C. Gould
Affiliation:
Institute of Biomaterial Science, Helmholtz-Zentrum Geesthacht, Kantstr. 55, 14513Teltow, Germany
Karl Kratz
Affiliation:
Institute of Biomaterial Science, Helmholtz-Zentrum Geesthacht, Kantstr. 55, 14513Teltow, Germany
Andreas Lendlein*
Affiliation:
Institute of Biomaterial Science, Helmholtz-Zentrum Geesthacht, Kantstr. 55, 14513Teltow, Germany Institute of Chemistry, University of Potsdam, 14476Potsdam, Germany
*
*Correspondence to: Prof. Andreas Lendlein [email protected]
Get access

Abstract

Advances in the fabrication and characterization of polymeric nanomaterials has greatly advanced the miniaturization of soft actuators, creating materials capable of replicating the functional physical behavior previously limited to the macroscale. Here, we demonstrate how a reversible shape-memory polymer actuation can be generated in a single micro/nano object, where the shape change during actuation of an individual fiber can be dictated by programming using an AFM-based method. Electrospinning was used to prepare poly(ε-caprolactone) micro-/nanofibers, which were fixed and crosslinked on a structured silicon wafer. The programming as well as the observation of recovery and reversible displacement of the fiber were performed by vertical three point bending, using an AFM testing platform introduced here. A plateau tip was utilized to improve the stability of the fiber contact and working distance, enabling larger deformations and greater rbSMPA performance. Values for the reversible elongation of εrev = 3.4 ± 0.1% and 10.5 ± 0.1% were obtained for a single micro (d = 1.0 ± 0.2 μm) and nanofiber (d = 300 ± 100 nm) in cyclic testing between the temperatures 10 and 60 °C. The reversible actuation of the nanofiber was successfully characterized for 10 cycles. The demonstration and characterization of individual shape-memory nano and microfiber actuators represents an important step in the creation of miniaturized robotic devices capable of performing complex physical functions at the length scale of cells and structural component of the extracellular matrix.

Type
Articles
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Hu, L., Zhang, Q., Li, X. and Serpe, M. J., Mater. Horiz. 6 (9), 1774-1793 (2019).CrossRefGoogle Scholar
Chan, B. Q. Y., Low, Z. W. K., Heng, S. J. W., Chan, S. Y., Owh, C. and Loh, X. J., ACS Appl. Mater. Interfaces 8 (16), 10070-10087 (2016).CrossRefGoogle Scholar
Zhou, J. and Sheiko, S. S., J. Polym. Sci., Part B: Polym. Phys. 54 (14), 1365-1380 (2016).CrossRefGoogle Scholar
Robertson, J. M., Rodriguez, R. X., Holmes, L. R., Mather, P. T. and Wetzel, E. D., Smart Mater. Struct. 25 (8), 085043 (2016).CrossRefGoogle Scholar
Lendlein, A. and Gould, O. E. C., Nat. Rev. Mater. 4 (2), 116-133 (2019).CrossRefGoogle Scholar
Lim, C. T., Tan, E. P. S. and Ng, S. Y., Appl. Phys. Lett. 92 (14), 141908 (2008).CrossRefGoogle Scholar
Baji, A., Mai, Y.-W., Wong, S.-C., Abtahi, M. and Chen, P., Compos. Sci. Technol. 70 (5), 703-718 (2010).CrossRefGoogle Scholar
Ionov, L., Stoychev, G., Jehnichen, D. and Sommer, J. U., ACS Appl. Mater. Interfaces 9 (5), 4873-4881 (2017).CrossRefGoogle Scholar
Stoychev, G. V. and Ionov, L., ACS Appl. Mater. Interfaces 8 (37), 24281-24294 (2016).CrossRefGoogle Scholar
Behl, M., Kratz, K., Noechel, U., Sauter, T. and Lendlein, A., Proc. Natl. Acad. Sci. U. S. A. 110 (31), 12555-12559 (2013).CrossRefGoogle Scholar
Neugirg, B. R., Burgard, M., Greiner, A. and Fery, A., J. Polym. Sci., Part B: Polym. Phys. 54 (23), 2418-2424 (2016).CrossRefGoogle Scholar
Fang, L., Gould, O. E. C., Lysyakova, L., Jiang, Y., Sauter, T., Frank, O., Becker, T., Schossig, M., Kratz, K. and Lendlein, A., Chemphyschem 19 (16), 2078-2084 (2018).CrossRefGoogle Scholar
Zhang, Q., Rudolph, T., Benitez, A. J., Gould, O. E. C., Behl, M., Kratz, K. and Lendlein, A., Smart Mater. Struct. 28 (5), 055037 (2019).CrossRefGoogle Scholar
Behl, M., Kratz, K., Zotzmann, J., Nöchel, U. and Lendlein, A., Adv. Mater. 25 (32), 4466-4469 (2013).CrossRefGoogle Scholar
Wang, X., Zhao, H., Turng, L.-S. and Li, Q., Ind. Eng. Chem. Res. 52 (13), 4939-4949 (2013).CrossRefGoogle Scholar