Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-26T09:38:43.503Z Has data issue: false hasContentIssue false

Schwarzites to schwarzynes: A new class of superdeformable materials

Published online by Cambridge University Press:  03 July 2020

Eliezer Fernando Oliveira
Affiliation:
Gleb Wataghin Institute of Physics, University of Campinas (UNICAMP), Campinas, SP, Brazil Center for Computational Engineering & Sciences (CCES), University of Campinas (UNICAMP), Campinas, SP, Brazil Department of Materials Science and Nanoengineering, Rice University, Houston, TX, United States
Douglas Soares Galvao
Affiliation:
Gleb Wataghin Institute of Physics, University of Campinas (UNICAMP), Campinas, SP, Brazil Center for Computational Engineering & Sciences (CCES), University of Campinas (UNICAMP), Campinas, SP, Brazil
Get access

Abstract

In this work, we have investigated the structural and mechanical properties of a new class of soft and superelastic materials, called schwarzynes. These materials are obtained by inserting sp carbon atoms (acetylenic groups) into the schwarzite framework. Using fully atomistic molecular dynamics simulations with the AIREBO force field, our results show that schwarzynes are stable materials up to high temperatures (1000K). Schwarzynes exhibit a very wide elastic regime, some of them up to 70% strain without structural fractures. Our preliminary results show that the elastic properties can be easily engineered by tuning the number of acetylenic groups and the crystallographic directions where they are inserted.

Type
Articles
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Mackay, A. L., Terrones, H., Nature 352, 762 (1991).CrossRefGoogle Scholar
Woellner, C. F., Botari, T., Perim, E., Galvao, D. S., MRS Adv. 3, 451 (2018).CrossRefGoogle Scholar
Sajadi, S. M., et al. ., Adv. Mater. 30, 1704820 (2018).CrossRefGoogle Scholar
Baughman, R. H., Eckhardt, H., Kertesz, M., J. Chem. Phys. 87, 6687 (1987).CrossRefGoogle Scholar
Coluci, V. R., Braga, S. F., Legoas, S. B., Galvao, D. S., and Baughman, R. H., Phys. Rev. B 68, 35430 (2003).CrossRefGoogle Scholar
Frenkel, D., Smit, B.. Understanding molecular simulation: From algorithms to applications. 2nd ed.Academic Press: San Diego, 2001.Google Scholar
Zang, A., Stephansson, O.. Stress field of the earth's crust. 1st ed.Springer: Houten, 2009.Google Scholar
Stuart, S. J., Tutein, A. B., Harrison, J. A., J. Chem. Phys. 112, 6472 (2000).CrossRefGoogle Scholar
Plimpton, S. J., Comput. Phys. 117, 1 (1995).CrossRefGoogle Scholar
Oliveira, E. F., Autreto, P. A. S., Woellner, C. F., Galvao, D. S., Carbon 139, 782 (2018).CrossRefGoogle Scholar
Oliveira, E. F., Autreto, P. A. S., Woellner, C. F., Galvao, D. S., Comput. Mater. Sci. 161, 190 (2019).CrossRefGoogle Scholar
Oliveira, E. F., Autreto, P. A. S., Woellner, C. F., Galvao, D. S., MRS Adv. 4(3-4), 191 (2019).Google Scholar
Oliveira, E. F., Machado, L. D., Baughman, R. H., Galvao, D. S., MRS Adv. 5(14-15), 751-756 (2020).CrossRefGoogle Scholar
Oliveira, E. F., Machado, L. D., Baughman, R. H., Galvao, D. S., Comput. Mater. Sci. 182, 109781 (2020).CrossRefGoogle Scholar
Burchell, T. D.. Carbon Materials for Advanced Technologies, 1st ed., Elsevier Science, Oxford, 1999.Google Scholar
Baughman, R. H., Galvao, D. S., Cui, C., Wang, Y., and Tomanek, D., Chem. Phys. Lett. 204, 8 (2004).CrossRefGoogle Scholar
Baughman, R. H. and Galvao, D. S., Nature 365, 735 (1993).CrossRefGoogle Scholar