Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-11T02:35:18.997Z Has data issue: false hasContentIssue false

Rubber Nanodomains Reinforced Epoxy Resin

Published online by Cambridge University Press:  02 May 2016

JA. Arcos Casarrubias
Affiliation:
División de Ingeniería Química y Bioquímica, Tecnológico de Estudios Superiores de Ecatepec, Edo. de Mex. 55210, MEXICO.
A. Reyes-Mayer
Affiliation:
Laboratorio de Nanopolimeros y Coloides, UNAM, 62210. MEXICO. Centro de Investigación en Ingeniería y Ciencias Aplicadas, UAEM, 62209. MEXICO.
R. Guardian-Tapia
Affiliation:
Centro de Investigación en Ingeniería y Ciencias Aplicadas, UAEM, 62209. MEXICO.
P. Castillo-Ocampo
Affiliation:
Laboratorio de Microscopia Electronica, Universidad Autonoma Metropolitana- Iztapalapa
A. Romo-Uribe*
Affiliation:
Laboratorio de Nanopolimeros y Coloides, UNAM, 62210. MEXICO.
*
To whom all correspondence should be addressed: [email protected]
Get access

Abstract

It has been reported that the addition of liquid rubbers, like poly(dimethylsiloxane) (PDMS), to epoxy resins alter the final morphology, increase the toughness and influence the curing kinetics. Due to immiscibility, there is phase separation of the elastomeric phase during curing giving rise to microdomains embedded in the epoxic matrix. The resultant heterogeneous morphology obtained after the reaction controls to an important extent the properties of the epoxy composite. Here we report a method to obtain well-dispersed rubber nanodomains of silyl-diglycidyl ether terminated polydimethyl siloxane (PDMS-DGE) in diglycidyl ether of bisphenol-A (DGEBA) epoxy by using a prepolymerization step. Light scattering and optical microscopy showed that initial mixing of pre-polymerized rubber produced phase separation with micron-scale droplet formation. However, as the curing reaction proceeded, the rubber domains decreased below optical resolution, light scattering intensity reached a maximum and then decreased. Finally, rubber nanodomains of about 100 nm size were formed at the end of curing reaction, as revealed by transmission electron microscopy (TEM). The pre-polymerization step induced a two-fold increase in gel time, tgel, due to lesser active groups available for reaction. Strikingly, tensile modulus and toughness increased, suggesting rubber-epoxy interaction. The final nanocomposite also exhibited higher thermal stability and char formation.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

May, CA., Epoxy Resins Chemistry and Technology, 2nd ed. (Marcel Dekker ed, Inc.: New York, 1988).Google Scholar
McAdams, LV., Gannon, JA., In High Performance Polymers and Composites, Kroschwitz, JI. ed. (John Wiley & Sons, Inc., 1991), pp 258318.Google Scholar
McGarry, FJ., Rosner, RB.. Epoxy Rubber Interactions. In: Riew, CK., Kinloch, AJ., eds. Toughened Plastics I. Science and Engineering, (Advances in Chemistry Series; Washington, DC, 1993), pp. 305315.Google Scholar
Chrusciel, JJ., Lesniak, E., Prog. Polym. Sci. 41, 67121 (2015).Google Scholar
Huang, F.. Liu, Y., Zhang, X., Gao, J., Song, Z., Tang, B., Wei, G., Qiao, J., Sci China Ser B Chemistry 48, 148155 (2005).Google Scholar
Dean, JM., Verghese, NE., Pham, HQ., Bates, FS., Macromolecules 36, 92679270 (2003).Google Scholar
Romo-Uribe, A., Arcos-Casarrubias, JA., Flores, A., Valerio-Cardenas, C., Gonzalez, AE., Polym. Bull. 71, 12411261 (2014).Google Scholar
Horiuchi, S., Hamanaka, T., Miyakawa, T., Narita, R., Wakabayashi, H., J. Electron Microscopy 52, 255266 (2003).Google Scholar