Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-11T11:56:28.009Z Has data issue: false hasContentIssue false

The role of surface morphology on nucleation density limitation during the CVD growth of graphene and the factors influencing graphene wrinkle formation

Published online by Cambridge University Press:  28 January 2020

Sajith Withanage*
Affiliation:
Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303, U.S.A.
Tharanga Nanayakkara
Affiliation:
Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303, U.S.A.
U. Kushan Wijewardena
Affiliation:
Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303, U.S.A.
Annika Kriisa
Affiliation:
Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303, U.S.A.
R. G. Mani
Affiliation:
Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303, U.S.A.
*
*Corresponding author: [email protected]
Get access

Abstract

CVD graphene growth typically uses commercially available cold-rolled copper foils, which includes a rich topography with scratches, dents, pits, and peaks. The graphene grown on this topography, even after annealing the foil, tends to include and reflect these topographic features. Further, the transfer of such CVD graphene to a flat substrate using a polymer transfer method also introduces wrinkles. Here, we examine an electropolishing technique for reducing native foil defects, characterize the resulting foil surface, grow single-crystal graphene on the polished foil, and examine the quality of the graphene for such defects.

Type
Articles
Copyright
Copyright © Materials Research Society 2020 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Hernández, S. C., Bezares, F. J., Robinson, J. T., Caldwell, J. D., and Walton, S. G., Carbon 60, 84 (2013).CrossRefGoogle Scholar
Berger, C., Song, Z., Li, T., Li, X., Ogbazghi, A. Y., Feng, R., Dai, Z., Marchenkov, A. N., Conrad, E. H., First, P. N., and Heer, W. A. D., The Journal of Physical Chemistry B 108, 19912 (2004).CrossRefGoogle Scholar
Lee, C., Wei, X., Kysar, J. W., and Hone, J., Science 321, 385 (2008).CrossRefGoogle Scholar
Chen, S., Brown, L., Levendorf, M., Cai, W., Ju, S.-Y., Edgeworth, J., Li, X., Magnuson, C. W., Velamakanni, A., Piner, R. D., Kang, J., Park, J., and Ruoff, R. S., ACS Nano 5, 1321 (2011).CrossRefGoogle Scholar
Heer, W. A. D., Berger, C., Wu, X., First, P. N., Conrad, E. H., Li, X., Li, T., Sprinkle, M., Hass, J., Sadowski, M. L., Potemski, M., and Martinez, G., Solid State Communications 143, 92 (2007).CrossRefGoogle Scholar
Bolotin, K., Sikes, K., Jiang, Z., Klima, M., Fudenberg, G., Hone, J., Kim, P., and Stormer, H., Solid State Communications 146, 351 (2008).CrossRefGoogle Scholar
Mani, R. G., Applied Physics Letters 108, 033507 (2016).CrossRefGoogle Scholar
Wijewardena, U. K., Brown, S. E., and Wang, X.-Q., The Journal of Physical Chemistry C 120, 22739 (2016).CrossRefGoogle Scholar
Mani, R. G., Hankinson, J., Berger, C., and Heer, W. A. D., Nature Communications 3, (2012).CrossRefGoogle Scholar
Motlagh, S. A. O., Nematollahi, F., Mitra, A., Zafar, A. J., Apalkov, V., and Stockman, M. I., Journal of Physics: Condensed Matter 32, 065305 (2019).Google Scholar
Ghimire, R., Wu, J. S., Apalkov, V., & Stockman, M. I. (2019). Topological Nanospaser. arXiv preprint arXiv:1911.03523.Google Scholar
Motlagh, S. A. O., Nematollahi, F., Apalkov, V., and Stockman, M. I., Physical Review B 100, (2019).Google Scholar
Kedzierski, J., Hsu, P.-L., Healey, P., Wyatt, P. W., Keast, C. L., Sprinkle, M., Berger, C., and Heer, W. A. D., IEEE Transactions on Electron Devices 55, 2078 (2008).CrossRefGoogle Scholar
Wijewardena, U. K., Nanayakkara, T., Samaraweera, R., Withanage, S., Kriisa, A., & Mani, R. G. Effects of Long-Time Current Annealing to the Hysteresis in CVD Graphene on SiO 2. MRS Advances, 1-8.CrossRefGoogle Scholar
Hass, J., Feng, R., Li, T., Li, X., Zong, Z., Heer, W. A. D., First, P. N., Conrad, E. H., Jeffrey, C. A., and Berger, C., Applied Physics Letters 89, 143106 (2006).CrossRefGoogle Scholar
Li, X., Cai, W., An, J., Kim, S., Nah, J., Yang, D., Piner, R., Velamakanni, A., Jung, I., Tutuc, E., Banerjee, S. K., Colombo, L., and Ruoff, R. S., Science 324, 1312 (2009).CrossRefGoogle Scholar
Bae, S., Kim, H., Lee, Y., Xu, X., Park, J.-S., Zheng, Y., Balakrishnan, J., Lei, T., Kim, H. R., Song, Y. I., Kim, Y.-J., Kim, K. S., Özyilmaz, B., Ahn, J.-H., Hong, B. H., and Iijima, S., Nature Nanotechnology 5, 574 (2010).CrossRefGoogle Scholar
Kobayashi, T., Bando, M., Kimura, N., Shimizu, K., Kadono, K., Umezu, N., Miyahara, K., Hayazaki, S., Nagai, S., Mizuguchi, Y., Murakami, Y., and Hobara, D., Applied Physics Letters 102, 023112 (2013).CrossRefGoogle Scholar
Zhou, H., Yu, W. J., Liu, L., Cheng, R., Chen, Y., Huang, X., Liu, Y., Wang, Y., Huang, Y., and Duan, X., Nature Communications 4, (2013).Google Scholar
Kraus, J., Böbel, M., and Günther, S., Carbon 96, 153 (2016).CrossRefGoogle Scholar
Li, Q., Zhang, C., Lin, W., Huang, Z., Zhang, L., Li, H., Chen, X., Cai, W., Ruoff, R. S., and Chen, S., Carbon 79, 406 (2014).CrossRefGoogle ScholarPubMed
Chuang, M.-C. and Woon, W.-Y., Carbon 103, 384 (2016).CrossRefGoogle Scholar
Li, X., Magnuson, C. W., Venugopal, A., Tromp, R. M., Hannon, J. B., Vogel, E. M., Colombo, L., and Ruoff, R. S., Journal of the American Chemical Society 133, 2816 (2011).CrossRefGoogle Scholar
Gan, L. and Luo, Z., ACS Nano 7, 9480 (2013).CrossRefGoogle Scholar
Li, X., Magnuson, C. W., Venugopal, A., An, J., Suk, J. W., Han, B., Borysiak, M., Cai, W., Velamakanni, A., Zhu, Y., Fu, L., Vogel, E. M., Voelkl, E., Colombo, L., and Ruoff, R. S., Nano Letters 10, 4328 (2010).CrossRefGoogle Scholar
Gulotty, R., Das, S., Liu, Y., and Sumant, A. V., Carbon 77, 341 (2014).CrossRefGoogle Scholar
Hao, Y., Wang, L., Liu, Y., Chen, H., Wang, X., Tan, C., Nie, S., Suk, J. W., Jiang, T., Liang, T., Xiao, J., Ye, W., Dean, C. R., Yakobson, B. I., Mccarty, K. F., Kim, P., Hone, J., Colombo, L., and Ruoff, R. S., Nature Nanotechnology 11, 426 (2016).CrossRefGoogle Scholar
Li, J., Wang, X.-Y., Liu, X.-R., Jin, Z., Wang, D., and Wan, L.-J., Journal of Materials Chemistry C 3, 3530 (2015).CrossRefGoogle Scholar
Suzuki, S., Kiyosumi, K., Nagamori, T., Tanaka, K., and Yoshimura, M., e-Journal of Surface Science and Nanotechnology 13, 404 (2015).CrossRefGoogle Scholar
Hao, Y., Bharathi, M. S., Wang, L., Liu, Y., Chen, H., Nie, S., Wang, X., Chou, H., Tan, C., Fallahazad, B., Ramanarayan, H., Magnuson, C. W., Tutuc, E., Yakobson, B. I., Mccarty, K. F., Zhang, Y.-W., Kim, P., Hone, J., Colombo, L., and Ruoff, R. S., Science 342, 720 (2013).CrossRefGoogle Scholar
Li, X., Magnuson, C. W., Venugopal, A., Tromp, R. M., Hannon, J. B., Vogel, E. M., Colombo, L., and Ruoff, R. S., Journal of the American Chemical Society 133, 2816 (2011).CrossRefGoogle Scholar
Fang, W., Hsu, A. L., Song, Y., Birdwell, A. G., Amani, M., Dubey, M., Dresselhaus, M. S., Palacios, T., and Kong, J., ACS Nano 8, 6491 (2014).CrossRefGoogle Scholar
Chen, X., Zhao, P., Xiang, R., Kim, S., Cha, J., Chiashi, S., and Maruyama, S., Carbon 94, 810 (2015).CrossRefGoogle ScholarPubMed
Huet, B. and Raskin, J.-P., Carbon 129, 270 (2018).CrossRefGoogle Scholar
Braeuninger-Weimer, P., Brennan, B., Pollard, A. J., and Hofmann, S., Chemistry of Materials 28, 8905 (2016).CrossRefGoogle Scholar
Choudhary, S., Sarma, J.V.N., Pande, S., Ababou-Girard, S., Turban, P., Lepine, B., and Gangopadhyay, S., AIP Advances 8, 055114 (2018).CrossRefGoogle Scholar
Lee, S.-K., Hsu, H.-C., and Tuan, W.-H., Materials Research 19, 51 (2016).CrossRefGoogle Scholar
Miseikis, V., Convertino, D., Mishra, N., Gemmi, M., Mashoff, T., Heun, S., Haghighian, N., Bisio, F., Canepa, M., Piazza, V., and Coletti, C., 2D Materials 2, 014006 (2015).CrossRefGoogle Scholar
Sarajlic, O. I. and Mani, R. G., Chemistry of Materials 25, 1643 (2013).CrossRefGoogle Scholar
Eres, G., Regmi, M., Rouleau, C. M., Chen, J., Ivanov, I. N., Puretzky, A. A., and Geohegan, D. B., ACS Nano 8, 5657 (2014).CrossRefGoogle Scholar
De, R., Albuquerque, D., Cruz, T., Yamaji, F., and Leite, F., Atomic Force Microscopy - Imaging, Measuring and Manipulating Surfaces at the Atomic Scale (2012).Google Scholar
Yi, D., Luo, D., Wang, Z.J., Dong, J., Zhang, X., Willinger, M.G., Ruoff, R.S., and Ding, F., Physical review letters, 120 (24), (2018).Google Scholar
Koenig, S. P., Boddeti, N. G., Dunn, M. L., and Bunch, J. S., Nature Nanotechnology 6, 543 (2011).CrossRefGoogle Scholar
Meca, E., Lowengrub, J., Kim, H., Mattevi, C., and Shenoy, V. B., Nano Letters 13, 5692 (2013).CrossRefGoogle Scholar