Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-23T13:05:57.329Z Has data issue: false hasContentIssue false

Rheological effect of the concentration of nanoparticles in cassava starch

Published online by Cambridge University Press:  22 January 2020

César de Jesús Alarcón-Hernández
Affiliation:
Ingeniería en Nanotecnología, Instituto Tecnológico Superior de Poza Rica (ITSPR), Cd. Poza Rica, Veracruz (93230) México
Esteban A. González-García*
Affiliation:
Ingeniería en Nanotecnología, Instituto Tecnológico Superior de Poza Rica (ITSPR), Cd. Poza Rica, Veracruz (93230) México
Luis Medina-Torres
Affiliation:
Departamento de farmacia, Universidad Nacional Autónoma de México (UNAM), Cd. Universitaria, Coyoacán, México D.F. (04510) México
Patricio Morales-Pacheco
Affiliation:
Ingeniería en Nanotecnología, Instituto Tecnológico Superior de Poza Rica (ITSPR), Cd. Poza Rica, Veracruz (93230) México
*
Get access

Abstract

Biodegradable material was prepared from cassava starch in combination with zinc oxide nanoparticles (ZnO NPs) to give the properties of microbial growth resistance, glycerin concentrations were varied to 5%, 10%, and 20% (w/v) for the study of the rheological properties. The nanoparticles were characterized by a spectrophotometer where an exciton peak at 370 nm was obtained. The different samples were subjected to a thermomechanical study through an AR-G2 hybrid rheometer, using a parallel plane geometry of 20 mm, a weak gel behavior is observed, it is a slimming material and it is thermostable, it is also established that the zinc oxide concentration nanoparticles do not affect the mechanical behavior of the material.

Type
Articles
Copyright
Copyright © Materials Research Society 2020 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Avérous, L., Pollet, E., Green Energy Technology, Springer Verlag, London, (2012).Google Scholar
Muhammadi, Shabina, Afzal, M., Hameed, S., Green Chem Lett Rev, (2015).Google Scholar
Billmeyer, F.W., Ciencias de los polímeros , (1ra edición, España, 1975) p. 3.Google Scholar
Fritz, H.G., European commission, Stuttgart German June (1994).Google Scholar
Matzinos, P. et al., Journal of applied Polymer Sciencie, 79, 2548-2557 (2000).3.0.CO;2-3>CrossRefGoogle Scholar
Betancourt, R., Reyes, P., Puente, B., Ávila, O., Rodríguez, C., Cadenas, O., Lira, S.,Garcia, C., Journal of Nanomaterials 5:5 pages, (2013).Google Scholar
Behera, S, Debata, A y Nayak PL, J Asian Sci Res., 1:27-56, (2011).Google Scholar
Padmavathy, N., Rajagopalan, V., Science and Technology of Advanced Material.9, (2008).CrossRefGoogle Scholar
Rabieh, S., Bagheri, M., Heydari, M., Badiei E., 26, 244-250, (2014).Google Scholar
Rossetti, R., ElLison, J.L., Gibson, J.M. and &us, L.E., J. Chem. Phys. 80, 4464, (1984).CrossRefGoogle Scholar
Pojtik, A.. Weller, H., Koch, U. and Henglein, A., Ber. Bunsenges. Physilc. Chem. 88, 969, (1984).Google Scholar
Ki, J. L., Haekwan, O., Minuk, J., Keekeun, L., Microelectronic Engineering, 111, 105-109 (2013).Google Scholar
Sushil, K. K.; Randeep, L.; Mehta, S.K., Ahmad, U., Materials letters, 106, 385-389 (2013).Google Scholar
Al-Gaashani, R., Radiman, S., Daud, A. R., Tabet, N., & Al-Douri, Y., Ceramics International, 39(3), 2283-2292, (2013).CrossRefGoogle Scholar
Ruiz, i. Nanotecnología en Alimentos. UPV/OCW 12 (2016).Google Scholar
Chaisawang, M., Suphantharika, M., Food Hydrocolloids, 20(5), 641-649. (2006).CrossRefGoogle Scholar
Eliasson, AC. Diario de estudios de textura, 17 (3), 253-265, (1986).Google Scholar
Eliasson, AC. Diario de estudios de textura, 17 (4), 357-375, (1986).Google Scholar
Chaisawang, M., & Suphantharika, M. Carbohydrate Polymers, 61(3), 288-295, (2005).CrossRefGoogle Scholar
López, O.V., et al., Food Hydrocolloids. 43: p. 18-24 (2015).CrossRefGoogle Scholar
Mensitieri, G., et al., Trends in Food Science & Technology. 22(2): p. 72-80 (2011).CrossRefGoogle Scholar
Shaw, M.T. and MacKnight, W.J., Introduction to polymer viscoelasticity: John Wiley & Sons. p. 15 (2005).CrossRefGoogle Scholar