Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-26T23:07:43.807Z Has data issue: false hasContentIssue false

Rhenium and Molybdenum as Diffusion Inhibitors in Catalytic Metal Particles for growth of Ultra-Long Carbon Nanotubes (CNTs)

Published online by Cambridge University Press:  10 March 2020

Michael J. Bronikowski*
Affiliation:
Dept. of Chemistry, Biochemistry and Physics, University of Tampa, Tampa, FL
Melissa King
Affiliation:
Dept. of Chemistry, Biochemistry and Physics, University of Tampa, Tampa, FL
*
Get access

Abstract

Bulk production by Chemical Vapor Deposition (CVD) of ultra-long Carbon Nanotubes (CNTs) with lengths greater than several centimeters is desirable for materials applications, but is not presently feasible. A principal reason for this limitation is cessation of CNT growth due to erosion of the nano-sized catalyst particles from which the CNTs nucleate and grow: at elevated CVD growth temperatures, atoms of catalytic metal detach and diffuse away from the particles, resulting in erosion and eventual deactivation of the particles. Recently, a novel idea was introduced to slow this diffusion and erosion by including heavy refractory metals with the catalyst metals in the nanoparticles. Here are presented recent and ongoing investigations into this method. The metal system investigated uses iron as catalyst and rhenium as diffusion inhibitor. Results show that inclusion of Re in the catalyst particles will substantially increase the catalysts particle lifetimes, and hence the growth time of the CNTs produced. These results are compared to previous results obtained using the iron/molybdenum system of catalyst/inhibitor.

Type
Articles
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Yacobson, B. and Smalley, R.. American Scientist 85, 324 (1997).Google Scholar
Meo, M. and Rossi, M.. Composites Science and Technology 66, 1597 (2006).CrossRefGoogle Scholar
Peng, B., Locascio, M., Zapol, P., Li, S. Y., Mielke, S. L., Schatz, G. C., Espinosa, H. D.. Nature Nanotechnology 3, 626 (2008).CrossRefGoogle Scholar
Atkinson, K. R., Hawkins, S. C., Huynh, C., Skourtis, C., Dai, J., Zhang, M., Fang, S. L., Zakhidov, A. A., Lee, S. B., Aliev, A. E., Williams, C. D., Baughman, R. H.. Physica B: Condensed Matter 394, 339 (2007).CrossRefGoogle Scholar
Zhang, M., Atkinson, K. R., Baughman, R. H.. Science 306, 1358 (2004).CrossRefGoogle Scholar
Zhang, R. F., Xie, H. H., Zhang, Y. Y., Zhang, Q., Jin, Y. G., Li, P., Qian, W. Z. and Wei, F.. Carbon 52, 232 (2013).CrossRefGoogle ScholarPubMed
Bronikowski, M. J.. Carbon 107, 297 (2016).CrossRefGoogle Scholar
Bronikowski, M. J. and King, M., MRS Advances 4 (3-4), 197-204 (2019); http://doi.org/10.1557/adv.2018.666CrossRefGoogle Scholar
Bronikowski, M. J.. J. Phys Chem. C 111, 17705 (2007).CrossRefGoogle Scholar
Hafner, J. H., Bronikowski, M. J., Azamian, B. R., Nikolaev, P., Rinzler, A. G., Colbert, D. T., Smith, K. A. and Smalley, R. E.. Chem. Phys. Lett. 296, 195 (1998).CrossRefGoogle Scholar
Huang, S., Woodson, M., Smalley, R. E., Liu, J.. Nano Letters 4, 1025 (2004).CrossRefGoogle Scholar
Cho, W., Schulz, M., and Shanov, V.. Carbon 72, 264 (2014).CrossRefGoogle Scholar
Kitiyanan, B., Alvarez, W., Harwell, D., and Resasco, D.. Chem. Phys Lett. 317, 498 (2000).CrossRefGoogle Scholar
Xiong, G. Y., Wang, D. Z., and Ren, Z. F.. Carbon 44, 969 (2006).CrossRefGoogle Scholar
Yun, Y., Shanov, V., Tu, Y., Subramaniam, S., and Schulz, M.. J. Phys. Chem. B 110, 23920 (2006).CrossRefGoogle Scholar
Puretzky, A., Geohegan, D., Jesse, S., Ivanov, I., G. Eres. Appl. Phys. A 81, 223 (2005).CrossRefGoogle Scholar
Li, Q. W., Zhang, X. F., DePaula, R. F., Zheng, L. X., Zhao, Y. H., Stan, L., Holesinger, T., Arendt, P. N., Peterson, D. E., Zhu, Y. T.. Adv. Mater. 18, 3160 (2006).CrossRefGoogle Scholar
Futaba, D., Hata, K., Yamada, T., Mizuno, K., Yumura, M., Iijima, S.. Phys. Rev. Lett. 95, 056104 (2005).CrossRefGoogle Scholar
Cassell, A. M., Raymakers, J. A., Kong, J., Dai, H. J.. J. Phys. Chem. B 103, 6484 (1999).CrossRefGoogle Scholar
Venegoni, D., , D., Serp, P., Feurer, R., Kihn, Y., Vahlas, C., Kalck, P., P. Carbon 40, 1799 (2002).CrossRefGoogle Scholar
Cui, H., Eres, G., Howe, J. Y., Puretkzy, A., Varela, M., Geohegan, D. B., Lowndes, D. H.. Chem. Phys. Lett. 374, 222 (2003).CrossRefGoogle Scholar
Ratke, Lorenz; Voorhees, Peter W. (2002). “Growth and Coarsening: Ostwald Ripening in Material Processing.” Springer. pp. 117118.Google Scholar
Yang, F.; Wang, X.; Zhang, D.; Yang, J.; Luo, D.; Xu, Z., et al.; Nature 510, 522 (2014)CrossRefGoogle Scholar