Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-28T23:14:11.419Z Has data issue: false hasContentIssue false

Review of the Stability/Capacity Trade-off in Silver Hollandite Lithium Battery Cathodes

Published online by Cambridge University Press:  20 March 2018

Paul F. Smith
Affiliation:
Department of Chemistry, Stony Brook University, Stony Brook, N.Y., 11794.
Diana M. Lutz
Affiliation:
Department of Chemistry, Stony Brook University, Stony Brook, N.Y., 11794.
Esther S. Takeuchi
Affiliation:
Department of Chemistry, Stony Brook University, Stony Brook, N.Y., 11794. Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, N.Y, 11794. Energy and Photon Sciences Directorate, Brookhaven National Laboratory, Upton, N.Y., 11973.
Kenneth J. Takeuchi
Affiliation:
Department of Chemistry, Stony Brook University, Stony Brook, N.Y., 11794. Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, N.Y, 11794.
Amy C. Marschilok*
Affiliation:
Department of Chemistry, Stony Brook University, Stony Brook, N.Y., 11794. Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, N.Y, 11794. Energy and Photon Sciences Directorate, Brookhaven National Laboratory, Upton, N.Y., 11973.
*
*corresponding author: [email protected]
Get access

Abstract

Highly detailed structural characterization is required to understand the discharge mechanism in order to effectively investigate α-MnO2 structured lithium battery cathode materials. This paper discusses recent findings which elucidate the lithiation mechanism of silver-hollandite, AgxMn8O16. For Ag1.2Mn8O16, the structure is not significantly perturbed during the first 2 equivalents of lithiation and the electrochemistry is highly reversible. Upon 4 equivalents of lithiation, the structure becomes highly distorted, in correlation with capacity fade observed over 40 cycles. Notably, regarding capacity fade, modifications to Ag/Mn ratio are less impactful than modifications to the α-MnO2 crystallite size. This is shown in comparisons of two materials with the same stoichiometry (Ag1.4Mn8O16) and differing crystallite size (10 and 15 nm).

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

ŧ

Equivalent contributions.

References

References:

Post, J. E., Proceedings of the National Academy of Sciences 96, 34473454 (1999).CrossRefGoogle Scholar
Thackeray, M. M., Progress in Solid State Chemistry 25, 171 (1997).CrossRefGoogle Scholar
Yang, Z., Trahey, L., Ren, Y., Chan, M. K. Y., Lin, C., Okasinski, J. and Thackeray, M. M., Journal of Materials Chemistry A 3, 73897398 (2015).CrossRefGoogle Scholar
Johnson, C. S., Dees, D. W., Mansuetto, M. F., Thackeray, M. M., Vissers, D. R., Argyriou, D., Loong, C. K. and Christensen, L., Journal of Power Sources 68, 570577 (1997).CrossRefGoogle Scholar
Ji, Y., Huang, L., Hu, J., Streb, C. and Song, Y.-F., Energy Environ. Sci. 8, 776789 (2015).CrossRefGoogle Scholar
Yuan, Y., Zhan, C., He, K., Chen, H., Yao, W., Sharifi-Asl, S., Song, B., Yang, Z., Nie, A., Luo, X., Wang, H., Wood, S. M., Amine, K., Islam, M. S., Lu, J. and Shahbazian-Yassar, R., Nature Communications 7, 13374 (2016).CrossRefGoogle Scholar
Poyraz, A. S., Huang, J., Pelliccione, C. J., Tong, X., Cheng, S., Wu, L., Zhu, Y., Marschilok, A. C., Takeuchi, K. J. and Takeuchi, E. S., Journal of Materials Chemistry A 5 (32), 1691416928 (2017).CrossRefGoogle Scholar
Smith, P. F., Brady, A. B., Lee, S.-Y., Bruck, A. M., Dooryhee, E., Wu, L., Zhu, Y., Takeuchi, K. J., Takeuchi, E. S. and Marschilok, A. C., ACS Applied Materials & Interfaces (2017).Google Scholar
Tompsett, D. A. and Islam, M. S., Chemistry of Materials 25 (12), 25152526 (2013).CrossRefGoogle Scholar
Kirshenbaum, K. C., Bock, D. C., Zhong, Z., Marschilok, A. C., Takeuchi, K. J. and Takeuchi, E. S., Physical Chemistry Chemical Physics 16 (19), 91389147 (2014).CrossRefGoogle Scholar
Kirshenbaum, K., Bock, D. C., Lee, C.-Y., Zhong, Z., Takeuchi, K. J., Marschilok, A. C. and Takeuchi, E. S., Science 347, 149154 (2015).CrossRefGoogle Scholar
Kirshenbaum, K. C., Bock, D. C., Brady, A. B., Marschilok, A. C., Takeuchi, K. J. and Takeuchi, E. S., Physical Chemistry Chemical Physics 17 (17), 1120411210 (2015).CrossRefGoogle Scholar
Huang, J., Poyraz, A. S., Lee, S.-Y., Wu, L., Zhu, Y., Marschilok, A. C., Takeuchi, K. J. and Takeuchi, E. S., ACS Applied Materials & Interfaces 9, 43334342 (2017).CrossRefGoogle Scholar
Huang, J., Hu, X., Brady, A. B., Wu, L., Zhu, Y., Takeuchi, E. S., Marschilok, A. C. and Takeuchi, K. J., Chemistry of Materials 30 (2), 366375 (2018).CrossRefGoogle Scholar
Chang, F. M. and Jansen, M., Angewandte Chemie International Edition in English 23, 906907 (1984).CrossRefGoogle Scholar
Takeuchi, K. J., Yau, S. Z., Menard, M. C., Marschilok, A. C. and Takeuchi, E. S., ACS Applied Materials and Interfaces 4, 55475554 (2012).CrossRefGoogle Scholar
Durham, J. L., Huang, J., Zhang, B., Wu, L., Tong, X., Pelliccione, C. J., Zhu, Y., Takeuchi, E. S., Marschilok, A. C. and Takeuchi, K. J., Journal of The Electrochemical Society 164 (14), A3814A3823 (2017).CrossRefGoogle Scholar
Smith, P. F., Takeuchi, K. J., Marschilok, A. C. and Takeuchi, E. S., Accounts of Chemical Research 50, 544548 (2017).CrossRefGoogle Scholar