Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-10T19:50:20.593Z Has data issue: false hasContentIssue false

Reversible Colloidal Crystallization

Published online by Cambridge University Press:  23 June 2020

Naveen Kuriakose
Affiliation:
Coatings Research Institute and School of Engineering, Eastern Michigan University, Ypsilanti, MI48197, USA
Pallavi Bapat
Affiliation:
Coatings Research Institute and School of Engineering, Eastern Michigan University, Ypsilanti, MI48197, USA
Harriet Lindsay
Affiliation:
Department of Chemistry, Eastern Michigan University, Ypsilanti, MI48197, USA
John Texter
Affiliation:
Coatings Research Institute and School of Engineering, Eastern Michigan University, Ypsilanti, MI48197, USA
Get access

Abstract

We report 3D colloidal self-assembly (crystallization) of poly(ionic liquid) latexes to produce crystals that exhibit reversible melting and recrystallization in water, due to “classical” interparticle interactions, typical of multifunctional polymers. These new materials are derived from an ionic liquid monomer that is polymerized at room temperature by redox-initiated polymerization. Particle synthesis, self-assembly, thermal properties, and introductory light diffraction effects are reported with a focus on melting. These crystals are distinguishable from classical colloidal crystalline arrays, and are the first such crystals to exhibit thermal melting. This new hydrogel offers promise for engineering large volume production of photonic crystals active in the visible and proximal spectral regions, by crystallization from suspension (solution), characteristic of most useful chemical compounds.

Type
Articles
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Present Address: Chem-Trend, 1445 McPherson Park Dr, Howell, MI 48843, USA

§

Present Address: BASF Corporation, 26701 Telegraph Road, Southfield, MI 48033, USA

References

Wang, Y. F., Jenkins, I. C., McGinley, J. T., Sinno, T., Crocker, J. C., Nat. Commun. 8, 14173 (2018).CrossRefGoogle Scholar
Ducrot, E., Gales, J., Yi, G. R., Pine, D. J., Optics Express 26, 30052 (2018).CrossRefGoogle Scholar
Elacqua, E., Zheng, X. L., Shillingford, C., Liu, M. Z., Weck, M., Acc. Chem. Res. 50, 27562766 (2017).CrossRefGoogle Scholar
Texter, J., Comptes Rend. Chimie, 6, 14251433 (2003).CrossRefGoogle Scholar
Vlasov, Y. A., Bo, X.-Z., Sturm, J. C., Norris, D. J., Nature 414 289293 (2001).CrossRefGoogle Scholar
Gabrys, P. A., Zornberg, L. Z., Macfarlane, R. J., Small 15 (26), SI, 1805424 (2019).CrossRefGoogle Scholar
Rogers, W. B., Shih, W. M., Manoharan, V. N., Nat. Rev. Mater. 1(3), 16008 (2016).Google Scholar
Welton, T., Chem. Rev. 99, 20172084 (1999).CrossRefGoogle Scholar
Lu, J.M., Yan, F., and Texter, J., Prog. Poly. Sci. 34, 431448 (2009).CrossRefGoogle Scholar
Yuan, J. Y., Mecerreyes, D., and Antonietti, M., Prog. Polym. Sci. 38, 10091036 (2013).CrossRefGoogle Scholar
Qian, W., Texter, J., Yan, F., Chem. Soc. Rev. 46, 11241159 (2017).CrossRefGoogle Scholar
Men, Y. J., Kuzmicz, D., Yuan, J. Y., Curr. Opin. Colloid Interface Sci. 19, 7683 (2014).CrossRefGoogle Scholar
Yuan, J., Antonietti, M., Macromolecules 44, 744750 (2011).CrossRefGoogle Scholar
Ebdon, J. R., Huckerby, T. N., Hunter, T. C., Polymer 35, 250256 (1994).CrossRefGoogle Scholar
Debye, P., Hückel, E., Physik. Zeitsch. 24, 185205 (1923); translated and typeset, M. J. Braus (2020), accessed 8 June 2020, https://minds.wisconsin.edu/handle/1793/79225.Google Scholar
Whitten, T. A., Sander, L. M., Phys. Rev. Lett. 47, 140021403 (1981).CrossRefGoogle Scholar
Robert, J. D., Caserio, M. C., Basic Principles of Organic Chemistry, Second Edition, Section 15.3, W. A. Benjamin, Menlo Park, CA (1977).Google Scholar
solvent polymorphsGoogle Scholar
Jaeger, G., Arch. Hist. Exact Sci. 53, 5181 (1998).CrossRefGoogle Scholar
Schaefer, D. W., Ackerson, B. J., Phys. Rev. Lett. 35, 14481451 (1975).CrossRefGoogle Scholar
Williams, R., Crandall, R. S., Wojtowicz, P. J., Phys. Rev. Lett. 37, 348351 (1976).CrossRefGoogle Scholar
Löwen, H., Phys. Reps. 237, 249324 (1994).CrossRefGoogle Scholar
Pusey, P. N., Zaccarelli, E., Valreriani, C., Sanz, E., Poon, W. C. K., Cates, M. E., Phil. Trans. R. Soc. A 367, 49935011 (2009).CrossRefGoogle Scholar
Rogers, W. B., Manoharan, V. N., Science 347, 639642 (2015).CrossRefGoogle Scholar
Xia, Y., Gates, B., Yin, Y., Lu, Y., Adv. Mater. 12, 693713 (2000).3.0.CO;2-J>CrossRefGoogle Scholar
Hoover, W. G., Ree, F. H., J. Chem. Phys. 49, 36093617 (1968).CrossRefGoogle Scholar
Supplementary material: PDF

Kuriakose et al. supplementary material

Supplementary Information

Download Kuriakose et al. supplementary material(PDF)
PDF 1.5 MB