Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-25T17:06:44.307Z Has data issue: false hasContentIssue false

Rapid elemental composition analysis of intermetallic ternary nanoalloys using calibration-free quantitative Laser Induced Breakdown Spectroscopy (LIBS)

Published online by Cambridge University Press:  24 April 2017

Seyyed Ali Davari
Affiliation:
Nano-BioMaterials Laboratory for Energy Energetics & Environment (nbml-E3), University of Tennessee, Knoxville, TN 37996, USA; Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Knoxville, TN 37996, USA;
Sheng Hu
Affiliation:
Nano-BioMaterials Laboratory for Energy Energetics & Environment (nbml-E3), University of Tennessee, Knoxville, TN 37996, USA; Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA
Erick L. Ribeiro
Affiliation:
Nano-BioMaterials Laboratory for Energy Energetics & Environment (nbml-E3), University of Tennessee, Knoxville, TN 37996, USA; Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA
Dibyendu Mukherjee*
Affiliation:
Nano-BioMaterials Laboratory for Energy Energetics & Environment (nbml-E3), University of Tennessee, Knoxville, TN 37996, USA; Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Knoxville, TN 37996, USA; Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA
*
Get access

Abstract

Intermetallic ternary nanoalloys (NA) have increasingly gained prominence as excellent catalysts. But, their size, morphology and chemical compositions affect their catalytic and interfacial activities significantly. In this study, we present laser-induced breakdown spectroscopy (LIBS) for rapid quantitative elemental composition characterization of ternary NAs with different elemental ratios. Specifically, we use a calibration-free approach with LIBS to estimate the elemental ratios of PtCuCo ternary NAs with various stoichiometric ratios synthesized via our in-house laser ablation synthesis in solution-galvanic replacement reactions (LASiS-GRR) technique. The size and morphology of the samples are determined from transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDX) measurements. The LIBS quantitative estimations for the NA samples are compared with results from inductively coupled plasma-optical emission spectroscopy (ICP-OES). The elemental ratio results of quantitative LIBS show good agreement with ICP-OES results, while being devoid of any external standard requirements or extensive sample preparations.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Hu, S., Melton, C. and Mukherjee, D., Phys Chem Chem Phys 16 (43), 2403424044 (2014).Google Scholar
Hu, S., Tian, M. K., Ribeiro, E. L., Duscher, G. and Mukherjee, D., J Power Sources 306, 413423 (2016).Google Scholar
Hu, S., Goenaga, G., Melton, C., Zawodzinski, T. A. and Mukherjee, D., Appl Catal B-Environ 182, 286296 (2016).Google Scholar
Scholl, J. A., Koh, A. L. and Dionne, J. A., Nature 483 (7390), 421-U468 (2012).Google Scholar
Hu, S., Cheng, K., Ribeiro, E. L., Park, K., Khomami, B. and Mukherjee, D., Catalysis Science & Technology (2017).Google Scholar
Holewinski, A., Idrobo, J. C. and Linic, S., Nat Chem 6 (9), 828834 (2014).CrossRefGoogle Scholar
Sneed, B. T., Young, A. P., Jalalpoor, D., Golden, M. C., Mao, S., Jiang, Y., Wang, Y. and Tsung, C. K., ACS Nano 8 (7), 72397250 (2014).Google Scholar
Radziemski, L. J., Loree, T. R., Cremers, D. A. and Hoffman, N. M., Anal Chem 55 (8), 12461252 (1983).CrossRefGoogle Scholar
Ferioli, F., Puzinauskas, P. V. and Buckley, S. G., Appl Spectrosc 57 (9), 11831189 (2003).Google Scholar
Mukherjee, D. and Cheng, M. D., J Anal Atom Spectrom 23 (1), 119128 (2008).Google Scholar
Mukherjee, D. and Cheng, M. D., Appl Spectrosc 62 (5), 554562 (2008).Google Scholar
Davari, S. A., Masjedi, S., Ferdous, Z. and Mukherjee, D., J Biophotonics (2017).Google Scholar
Kebede, A., Singh, A. K., Rai, P. K., Giri, N. K., Rai, A. K., Watal, G. and Gholap, A. V., Laser Med Sci 28 (2), 579587 (2013).CrossRefGoogle Scholar
Stehrer, T., Praher, B., Viskup, R., Jasik, J., Wolfmeir, H., Arenholz, E., Heitz, J. and Pedarnig, J. D., J Anal Atom Spectrom 24 (7), 973978 (2009).Google Scholar
Mukherjee, D., Rai, A. and Zachariah, M. R., J Aerosol Sci 37 (6), 677695 (2006).Google Scholar
Davari, S. A., Hu, S. and Mukherjee, D., Talanta 164, 330340 (2017).Google Scholar
Kramida, A., Ralchenko, Yu., Reader, J. and NIST ASD Team, (2015).Google Scholar
Den Hartog, E. A., Herd, M. T., Lawler, J. E., Sneden, C., Cowan, J. J. and Beers, T. C., Astrophys J 619 (1), 639655 (2005).CrossRefGoogle Scholar
Supplementary material: PDF

Davari supplementary material

Table S1

Download Davari supplementary material(PDF)
PDF 117.8 KB