Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-22T19:49:47.898Z Has data issue: false hasContentIssue false

Quaternary Quasicrystal Alloys for Hydrogen Storage Technology

Published online by Cambridge University Press:  03 February 2020

Amal Azraai Azuha*
Affiliation:
Course of Mechanical Engineering, Graduate School, Shibaura Institute of Technology, Tokyo, Japan
Alicja Klimkowicz
Affiliation:
SIT Research Laboratories, Shibaura Institute of Technology, Tokyo, Japan
Akito Takasaki
Affiliation:
Department of Engineering Science and Mechanics, Shibaura Institute of Technology, Tokyo, Japan
Get access

Abstract

The Ti-Zr-Ni quasicrystal alloys have prospected to be one of the promising materials for hydrogen storage. This is because this type of quasicrystal contains 140 interstitial sites (T-sites) constituted in the Bergman Cluster that could accommodate hydrogen. The number of available sites is far greater than the number found in regular crystals, therefore the improvement of hydrogen storage capacity could be expected. For this study, we focus on the effect of substitution of Cr, in place of Ni in Ti-Zr-Ni amorphous and quasicrystal alloys. The studied samples are synthesized by the combination of mechanical alloying and sintering process. The subsequent measurements of electrochemical hydrogenation and dehydrogenation are carried out by a three-electrode cell at room temperature. The studied samples are structurally characterized by X-ray diffraction and their morphology is analyzed by scanning electron microscope and transmission electron microscope. The influence of the 4th substituted element on the possibility of a new-formed Cr quasicrystalline phase and the potential improvement of hydrogenation and dehydrogenation kinetics for both amorphous and quasicrystalline phase is evaluated. Our measurements showed the maximum discharge capacity achieved by Ti45Zr38Ni7Cr10 amorphous and Ti45Zr38Ni12Cr5 i-phase electrodes at a current density of 15 mA·g-1 to be 9.8 mAh·g-1and 55.2 mAh·g-1 respectively. The maximum estimated H/M value for the Ti45Zr38Ni12Cr5 i-phase electrode reached 1.36. These results are encouraging and show the merit of the usage of quasicrystals as hydrogen storage materials.

Type
Articles
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References:

Rena, J., Musyoka, N.M., Langmi, H.W., Mathe, M., Liao, S., "Current research trends and perspectives on materials-based hydrogen storage solutions: A critical review", International Journal of Hydrogen Energy, 42 (1) (2017) 289-311CrossRefGoogle Scholar
Durbin, J., Jugroot, C.M., "Review of hydrogen storage techniques for on board vehicle applications", International Journal of Hydrogen Energy, 38(34) (2013)14595-14617CrossRefGoogle Scholar
Colbea, J.B.V., Ares, J.R., Barale, J., Baricco, M., Buckley, C., Capurso, G., Gallandat, N., Grant, D.M., Guzikk, M.N., Jacob, I., Jensen, E.H., Jensen, T., Jepsena, J., Klassen, T., Lototskyy, M.V., Manickam, K., Montone, A., Puszkiel, J., Dornheim, M., "Application of hydrides in hydrogen storage and compression: Achievements, outlook and perspectives", International Journal of Hydrogen Energy, 44(15) (2019) 7780-7808Google Scholar
Lototskyy, M.V., Tolja, I., Pickering, L., Sita, C., Barbir, F., Yartys, V., "The use of metal hydrides in fuel cell applications", Progress in Natural Science: Materials International, 27(1) (2017), 3-20CrossRefGoogle Scholar
Satyapal, S., “Hydrogen: A clean, flexible energy carrier”, Office of Energy Efficiency & Renewable Energy (2017), accessed on 08.12.19 https://www.hydrogen.energy.gov/pdfs/review18/01_satyapal_plenary_2018_amr.pdfGoogle Scholar
Rusman, N.A.A., Dahari, M., “A review on the current progress of metal hydrides material for solid-state hydrogen storage applications”, International Journal of Hydrogen Energy 41 (2016) 12108-12126CrossRefGoogle Scholar
Sakintuna, B., Darkrim, F.L., Hirscher, M., “Metal hydride materials for solid hydrogen storage: A review”, International Journal of Hydrogen Energy 32 (2007) 1121-1140CrossRefGoogle Scholar
Takasaki, A., Kelton, K.F., “Hydrogen storage in Ti-based quasicrystals powders produced by mechanical alloying”, International Journal of Hydrogen Energy, 31 (2006) 183-190CrossRefGoogle Scholar
Stroud, R. M., Viano, A. M., Gibbons, P. C., Kelton, K. F., and Misture, S. T., “Stable Ti-based quasicrystal offers prospect for improved hydrogen storage”, Appl. Phys. Lett. 69, (1996) 2998-3000CrossRefGoogle Scholar
Kelton, K. F., Kim, W. J., Stroud, R. M., “A stable Ti-based quasicrystal”, Applied Physics Letters, 70, (1997) 3230-3232CrossRefGoogle Scholar
Lee, S.H., Kim, J., “Structure and hydrogen absorption properties of Ti53Zr27Ni20(Pd, V) quasicrystals”, International Journal of Hydrogen Energy, 43 (2018) 19130-19140CrossRefGoogle Scholar
Wen, H., Jianli, W., Lidong, W., Yaoming, W., Limin, W., “Electrochemical hydrogenation storage in (Ti1-xVx)2Ni (x = 0.05-0.3) alloys comprising icosahedral quasicrystalline phase”, Electrochimica Acta, 54 (2009) 2770-2773Google Scholar
Gibbons, P.C., Kelton, K.F.. In: Stadnik, Z. M., editor. Physical properties of quasicrystals. Berlin: Springer, (1999) 403-431CrossRefGoogle Scholar
Lei, Y., Wu, Y., Yang, Q., Wu, J., Wang, Q., “Electrochemical Behavior of Some Mechanically Alloyed Mg-Ni-Based Amorphous Hydrogen Storage Alloys”, Zeitschrift für Physikalische Chemie, Bd. 183 (1994) S. 379-384CrossRefGoogle Scholar
Takasaki, A., Zając, W., Okuyama, T., Szmyd, J. S., “Electrochemical Hydrogenation of Ti45Zr38Ni17 Quasicrystal and Amorphous Powders produced by Mechanical Alloying”, Journal of the Electrochemical Society, 156 (7) (2009) A521-A526CrossRefGoogle Scholar
Liu, B., Wu, Y., Wang, L., “Electrochemical properties of amorphous and icosahedral quasicrystalline Ti45Zr35Ni17Cu3 powders”, Journal of Power Sources 159 (2006) 14581463CrossRefGoogle Scholar
Ariga, Y., Takasaki, A., Kimijima, T., Świerczek, K., “Electrochemical properties of Yi49Zr26Ni25-xPdx (x = 0-6) quasicrystal electrodes produced by mechanical alloying”, Journal of Alloys and Compounds 645 (2015) S152-S154CrossRefGoogle Scholar
Baster, D., Takasaki, A., Kuroda, C., Hanc, E., Lee, S.H., Swierczek, K., Szmyd, J.S., Kim, J. Y., Molenda, J., “Effect of mechanical milling on electrochemical properties of Ti45Zr38-xNi17+x (x = 0, 8) quasicrystals produced by rapid-quenchingJournal of Alloys and Compounds 580 (2013) S238-S242CrossRefGoogle Scholar
Balcerzak, M., “Electrochemical and structural studies on Ti-Zr-Ni and Ti-Zr-Ni-Pd alloys and composites”, Journal of Alloys and Compounds 658 (2016) 576-587CrossRefGoogle Scholar
Zywczak, A., Shinya, D., Gondek, L., Takasaki, A., Figiel, H., “Hydriding of Ti45Zr38Ni17-xFex nanocompounds” Solid State Communications 150 (2010) 1-4CrossRefGoogle Scholar
Takasaki, A., Zywczak, A., Gondek, L., Figiel, H., “Hydrogen Storage Characteristics of Ti45Zr38Ni17-xCox (x = 4, 8) alloy and quasicrystal powders produced by mechanical alloying”, Journal of Alloys and Compounds 580 (2013) S216-S218CrossRefGoogle Scholar
Lina, J., Liang, F., Wu, Y., Liu, W., Wang, L., "Hydrogen storage properties of Ti1.4V0.6Ni + x Mg (x = 1–3, wt.%) alloys" International Journal of Hydrogen Energy, 39 (7) (2014) 3313-3319CrossRefGoogle Scholar
Hu, W., Wang, L., Wang, L., “Quinary icosahedral quasicrystalline Ti-V-Ni-Mn-Cr alloy: A novel anode material for Ni-MH rechargeable batteries”, Materials Letters 65 (2011) 2868-2871CrossRefGoogle Scholar
Cerón-Hurtado, N. M., Esquivel, M.R., "Stages of mechanical alloying during the synthesis of Sn-containing AB5-based intermetallics", Conference: Hyfusen 2009 – Tercer Congreso Nacional –Segundo Congreso Iberoamericano Hidrógeno Fuentes Sustentables de Energía (2009)CrossRefGoogle Scholar
Balcerzak, M., “Hydrogenation study of nanostructured Ti-Zr-Ni alloys”, Journal of Energy Storage 8 (2016) 6-11CrossRefGoogle Scholar
Stroud, R.M., Kelton, K.F., Misture, S.T., “High temperature x-ray and calorimetric studies of phase transformations in quasicrystalline Ti-Zr-Ni alloys”, J. Mater. Res., Vol. 12, No. 2, (1997)CrossRefGoogle Scholar
Bancel, P.A., Heiney, P.A., Stephens, P.W., Goldman, A.I., Horn, P.M., Phys. Rev. Lett. 54 (1985) 2422-2425CrossRefGoogle Scholar
Takasaki, A., Huett, V.T., Kelton, K.F., "High-pressure hydrogen loading in Ti45Zr38Ni17 amorphous and quasicrystal powders synthesized by mechanical alloying", Materials Transactions, 43(8) (2002) 2165-2168CrossRefGoogle Scholar
Viano, A.M., Majzoub, E.H., Stroud, R.M., Kramer, M.J., Misture, S.T., Gibbons, P.C., Kelton, K.F., Philos. Mag. A, 78, 131 (1998)CrossRefGoogle Scholar
Elser, V., Phys. Rev. B, 32, (1985) 4892CrossRefGoogle Scholar
Liu, D., Zhao, Z., Luo, T., Xing, C., Fei, L., Lin, J., Hou, J., Jiang, D., Liu, W., Wang, L., “Effect of LiH on electrochemical hydrogen storage properties of Ti55V10Ni35 quasicrystal”, Solid State Sciences 52 (2016) 19-22CrossRefGoogle Scholar
Sun, W., Ohsuna, T., Hiraga, K., Structural study of an Al–Ni–Ru decagonal quasicrystal with 1.6 nm periodicity and a related approximant phase, Journal of Alloys and Compounds, 342 (1-2) (2002) 87-91CrossRefGoogle Scholar
Tominaga, T., Takasaki, A., Shibato, T., Swierczek, K., “HREM observation and high-pressure composition isotherm measurement of Ti45Zr38Ni17 quasicrystal powders synthesized by mechanical alloying”, Journal of Alloys and Compounds 645 (2015) S292-S294CrossRefGoogle Scholar