Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-23T07:43:03.908Z Has data issue: false hasContentIssue false

Quasi-Continuously Tuning the Size of Graphene Quantum Dots via an Edge-Etching Mechanism

Published online by Cambridge University Press:  17 March 2016

Shujun Wang
Affiliation:
Queensland Miro- and Nanotechnology Centre, Griffith University, Nathan Campus, Brisbane, QLD 4111, Australia School of Engineering (Environmental), Griffith University, Nathan Campus, Brisbane, QLD 4111, Australia
Ivan S. Cole
Affiliation:
CSIRO Materials Science and Engineering, –Gate 5, Normanby Road, Clayton, VIC 3168, Australia
Dongyuan Zhao
Affiliation:
Department of Chemistry & Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, P.R. China
Qin Li*
Affiliation:
Queensland Miro- and Nanotechnology Centre, Griffith University, Nathan Campus, Brisbane, QLD 4111, Australia School of Engineering (Environmental), Griffith University, Nathan Campus, Brisbane, QLD 4111, Australia
*
*Corresponding author at: Nathan campus Griffith University,170 Kessels Road, Nathan, QLD 4111, Au; E-mail address: [email protected]; Tel.: (07) 373 57514

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Graphene quantum dots (GQDs), a nano version of graphene whose interesting properties that distinguish them from bulk graphene, have recently received significant scientific attention. The quantum confinement effect referring to the size-dependence of physical and chemical properties opens great possibility in the practical applications of this material. However, tuning the size of graphene quantum dots is still difficult to achieve. Here, an edge-etching mechanism which is able to tune the size of GQDs in a quasi-continuous manner is discovered. Different from the ‘unzipping’ mechanism which has been adopted to cut bulk graphitic materials into small fragments and normally cut through the basal plane along the ‘zig-zag’ direction where epoxy groups reside, the mechanism discovered in this research could gradually remove the peripheral carbon atoms of nano-scaled graphene (i.e. GQDs) due to the higher chemical reactivity of the edge carbon atoms than that of inner carbon atoms thereby tuning the size of GQDs in a quasi-continuous fashion. It enables the facile manipulate of the size and properties of GQDs through controlling merely the reaction duration. It is also believed the as discovered mechanism could be generalized for synthesizing various sizes of GQDs from other graphitic precursors (e.g. carbon fibres, carbon nanotubes, etc).

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

References

REFERENCES

Ponomarenko, L. A., Schedin, F., Katsnelson, M. I., Yang, R., Hill, E. W., Novoselov, K. S. and Geim, A. K., Science 320 (5874), 356358 (2008).Google Scholar
Barreiro, A., van der Zant, H. S. and Vandersypen, L. M., Nano letters 12 (12), 60966100 (2012).Google Scholar
Ihn, T., Guttinger, J., Molitor, F., Schnez, S., Schurtenberger, E., Jacobsen, A., Hellmuller, S., Frey, T., Droscher, S., Stampfer, C. and Ensslin, K., Mater Today 13 (3), 4450 (2010).Google Scholar
Stampfer, C., Schurtenberger, E., Molitor, F., Guttinger, J., Ihn, T. and Ensslin, K., Nano letters 8 (8), 23782383 (2008).CrossRefGoogle Scholar
Ezawa, M., New Journal of Physics 11 (9), 095005 (2009).CrossRefGoogle Scholar
Ezawa, M., The European Physical Journal B 67 (4), 543549 (2009).Google Scholar
Wang, Y., Zhang, L., Liang, R.-P., Bai, J.-M. and Qiu, J.-D., Analytical chemistry 85 (19), 91489155 (2013).CrossRefGoogle Scholar
Yan, X., Cui, X., Li, B. and Li, L. S., Nano letters 10 (5), 18691873 (2010).Google Scholar
Kou, L., Li, F., Chen, W. and Guo, T., Organic Electronics 14 (6), 14471451 (2013).CrossRefGoogle Scholar
Zhao, L. and Yelin, S. F., Physical Review B 81 (11) (2010).Google Scholar
Shen, J., Zhu, Y., Yang, X. and Li, C., Chemical communications 48 (31), 36863699 (2012).Google Scholar
Sreeprasad, T. S., Rodriguez, A. A., Colston, J., Graham, A., Shishkin, E., Pallem, V. and Berry, V., Nano letters 13 (4), 17571763 (2013).CrossRefGoogle Scholar
Sun, H., Gao, N., Wu, L., Ren, J., Wei, W. and Qu, X., Chemistry 19 (40), 1336213368 (2013).Google Scholar
Zheng, A. X., Cong, Z. X., Wang, J. R., Li, J., Yang, H. H. and Chen, G. N., Biosensors & bioelectronics 49, 519524 (2013).Google Scholar
Wang, S. J., Lemon, Z., Cole, I. S. and Li, Q., Rsc Advances 5 (51), 4124841254 (2015).Google Scholar
Sun, X., Liu, Z., Welsher, K., Robinson, J. T., Goodwin, A., Zaric, S. and Dai, H., Nano research 1 (3), 203212 (2008).Google Scholar
Wu, X., Tian, F., Wang, W., Chen, J., Wu, M. and Zhao, J. X., Journal of materials chemistry. C, Materials for optical and electronic devices 1 (31), 46764684 (2013).Google Scholar
Zhang, M., Bai, L., Shang, W., Xie, W., Ma, H., Fu, Y., Fang, D., Sun, H., Fan, L., Han, M., Liu, C. and Yang, S., Journal of Materials Chemistry 22 (15), 7461 (2012).Google Scholar
Pan, D., Guo, L., Zhang, J., Xi, C., Xue, Q., Huang, H., Li, J., Zhang, Z., Yu, W., Chen, Z., Li, Z. and Wu, M., Journal of Materials Chemistry 22 (8), 3314 (2012).CrossRefGoogle Scholar
Habiba, K., Makarov, V. I., Avalos, J., Guinel, M. J. F., Weiner, B. R. and Morell, G., Carbon 64, 341350 (2013).Google Scholar
Ritter, K. A. and Lyding, J. W., Nat Mater 8 (3), 235242 (2009).Google Scholar
Fernández-Rossier, J. and Palacios, J., Physical Review Letters 99 (17) (2007).Google Scholar
Guttinger, J., Molitor, F., Stampfer, C., Schnez, S., Jacobsen, A., Droscher, S., Ihn, T. and Ensslin, K., Reports on progress in physics. Physical Society 75 (12), 126502 (2012).Google Scholar
Mandal, B., Sarkar, S. and Sarkar, P., Journal of Nanoparticle Research 14 (12) (2012).Google Scholar
Nakada, K., Fujita, M., Dresselhaus, G. and Dresselhaus, M. S., Physical Review B 54 (24), 1795417961 (1996).CrossRefGoogle Scholar
Stampfer, C., Fringes, S., Güttinger, J., Molitor, F., Volk, C., Terrés, B., Dauber, J., Engels, S., Schnez, S., Jacobsen, A., Dröscher, S., Ihn, T. and Ensslin, K., Frontiers of Physics 6 (3), 271293 (2011).Google Scholar
Wang, W. L., Meng, S. and Kaxiras, E., Nano Lett 8 (1), 241245 (2008).Google Scholar
Dong, Y., Pang, H., Ren, S., Chen, C., Chi, Y. and Yu, T., Carbon 64, 245251 (2013).Google Scholar
Li, L.-L., Ji, J., Fei, R., Wang, C.-Z., Lu, Q., Zhang, J.-R., Jiang, L.-P. and Zhu, J.-J., Advanced Functional Materials 22 (14), 29712979 (2012).Google Scholar
Li, Y., Hu, Y., Zhao, Y., Shi, G., Deng, L., Hou, Y. and Qu, L., Advanced materials 23 (6), 776780 (2011).Google Scholar
Pan, D., Zhang, J., Li, Z. and Wu, M., Advanced materials 22 (6), 734738 (2010).Google Scholar
Peng, J., Gao, W., Gupta, B. K., Liu, Z., Romero-Aburto, R., Ge, L., Song, L., Alemany, L. B., Zhan, X., Gao, G., Vithayathil, S. A., Kaipparettu, B. A., Marti, A. A., Hayashi, T., Zhu, J. J. and Ajayan, P. M., Nano Lett 12 (2), 844849 (2012).CrossRefGoogle Scholar
Lee, J., Kim, K., Park, W. I., Kim, B. H., Park, J. H., Kim, T. H., Bong, S., Kim, C. H., Chae, G., Jun, M., Hwang, Y., Jung, Y. S. and Jeon, S., Nano Lett 12 (12), 60786083 (2012).Google Scholar
Wang, S. J., Chen, Z. G., Cole, I. and Li, Q., Carbon 82, 304313 (2015).Google Scholar
Eda, G., Lin, Y. Y., Mattevi, C., Yamaguchi, H., Chen, H. A., Chen, I. S., Chen, C. W. and Chhowalla, M., Advanced materials 22 (4), 505509 (2010).CrossRefGoogle Scholar
Shinde, D. B. and Pillai, V. K., Chemistry 18 (39), 1252212528 (2012).CrossRefGoogle Scholar
Zhu, S., Zhang, J., Liu, X., Li, B., Wang, X., Tang, S., Meng, Q., Li, Y., Shi, C., Hu, R. and Yang, B., RSC Advances 2 (7), 2717 (2012).Google Scholar
Tang, L. B., Ji, R. B., Cao, X. K., Lin, J. Y., Jiang, H. X., Li, X. M., Teng, K. S., Luk, C. M., Zeng, S. J., Hao, J. H. and Lau, S. P., Acs Nano 6 (6), 51025110 (2012).Google Scholar
Biscoe, J., Journal of Applied Physics 13 (6), 364 (1942).Google Scholar
Ungar, T., Gubicza, J., Ribarik, G., Pantea, C. and Zerda, T. W., Carbon 40 (6), 929937 (2002).Google Scholar
Warren, B. E., Phys Rev 59 (9), 693698 (1941).Google Scholar
Manivannan, A., Chirila, M., Giles, N. C. and Seehra, M. S., Carbon 37 (11), 17411747 (1999).Google Scholar
Tuinstra, F., The Journal of Chemical Physics 53 (3), 1126 (1970).Google Scholar
Li, Z. Y., Zhang, W. H., Luo, Y., Yang, J. L. and Hou, J. G., J Am Chem Soc 131 (18), 6320(2009).Google Scholar
Sun, T. and Fabris, S., Nano Lett 12 (1), 1721 (2012).CrossRefGoogle Scholar
Sheka, E. F. and Chernozatonskii, L. A., Int J Quantum Chem 110 (10), 19381946 (2010).Google Scholar
Fujii, S. and Enoki, T., Accounts Chem Res 46 (10), 22022210 (2013).Google Scholar
Supplementary material: File

Wang supplementary material

Wang supplementary material 1

Download Wang supplementary material(File)
File 661.4 KB