Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-23T08:29:19.607Z Has data issue: false hasContentIssue false

Quantifying Grain Level Stress-Strain Behavior for AM40 via Instrumented Microindentation

Published online by Cambridge University Press:  13 January 2016

Guang Cheng
Affiliation:
Advanced Computational, Mathematics, and Data Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA 99352, U.S.A.
Erin I. Barker
Affiliation:
Advanced Computational, Mathematics, and Data Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA 99352, U.S.A.
Elizabeth V. Stephens
Affiliation:
Energy Processes and Materials Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA 99352, U.S.A.
Kyoo Sil Choi
Affiliation:
Advanced Computational, Mathematics, and Data Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA 99352, U.S.A.
Xin Sun*
Affiliation:
Advanced Computational, Mathematics, and Data Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA 99352, U.S.A.
*
Get access

Abstract

Microindentation is performed on hot isostatic pressed (HIP) Mg-Al (AM40) alloy samples produced by high-pressure die cast (HPDC) process for the purpose of quantifying the mechanical properties of the α-Mg grains. The process of obtaining elastic modulus and hardness from indentation load-depth curves is well established in the literature. A new inverse method is developed to extract plastic properties in this study. The method utilizes empirical yield strength-hardness relationship reported in the literature together with finite element modeling of the individual indentation. Due to the shallow depth of the indentation, indentation size effect (ISE) is taken into account when determining plastic properties. The stress versus strain behavior is determined for a series of indents. The resulting average values and standard deviations are obtained for future use as input distributions for microstructure-based property prediction of AM40.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Kubota, K., Mabuchi, M. and Higashi, K., J. Mater. Sci. 34, 22552262 (1999).Google Scholar
Kulekci, M. K., Int J Adv Manuf Tech 39, 851865 (2008).CrossRefGoogle Scholar
Mordike, B. and Ebert, T., Mater. Sci. Eng., A 302, 3745 (2001).CrossRefGoogle Scholar
Barker, E. I., Choi, K. S., Sun, X., Deda, E., Allison, J., Li, M., Forsmark, J., Zindel, J. and Godlewski, L., Comput. Mater. Sci. 92, 353361 (2014).Google Scholar
Choi, K. S., Soulami, A., Liu, W. N., Sun, X. and Khaleel, M. A., Comput. Mater. Sci. 50, 720730 (2010).Google Scholar
Sun, X., Choi, K. S., Liu, W. N. and Khaleel, M. A., Int. J. Plast. 25, 18881909 (2009).Google Scholar
Williams, J. J., Walters, J. L., Wang, M. Y., Chawla, N. and Rohatgi, A., JOM 65, 226233 (2013).Google Scholar
Pozuelo, M., Chang, Y. W. and Yang, J. M., Mater. Lett. 108, 320323 (2013).Google Scholar
Ng, K. S. and Ngan, A. H. W., Philos. Mag. 89, 30133026 (2009).Google Scholar
Bočan, J., Maňák, J. and Jäger, A., Mater. Sci. Eng., A 644, 121128 (2015).Google Scholar
Sánchez-Martín, R., Pérez-Prado, M. T., Segurado, J., Bohlen, J., Gutiérrez-Urrutia, I., Llorca, J. and Molina-Aldareguia, J. M., Acta Mater. 71, 283292 (2014).CrossRefGoogle Scholar
Stewart, J. L., Jiang, L., Williams, J. J. and Chawla, N., Mater. Sci. Eng., A 534, 220227 (2012).Google Scholar
Zambaldi, C., Zehnder, C. and Raabe, D., Acta Mater. 91, 267288 (2015).Google Scholar
Mostafavi, M., Collins, D. M., Cai, B., Bradley, R., Atwood, R. C., Reinhard, C., Jiang, X., Galano, M., Lee, P. D. and Marrow, T. J., Acta Mater. 82, 468482 (2015).Google Scholar
(ASTM International, Philadelphia, 2007).Google Scholar
Oliver, W. C. and Pharr, G. M., J. Mater. Res. 7, 15641583 (1992).Google Scholar
Dao, M., Chollacoop, N., Van Vliet, K. J., Venkatesh, T. A. and Suresh, S., Acta Mater. 49, 38993918 (2001).CrossRefGoogle Scholar
Ogasawara, N., Chiba, N. and Chen, X., J. Mater. Res. 20, 22252234 (2005).CrossRefGoogle Scholar
Bucaille, J. L., Stauss, S., Felder, E. and Michler, J., Acta Mater. 51, 16631678 (2003).Google Scholar
Xu, Z.-H. and Rowcliffe, D., Philos. Mag. A 82, 18931901 (2002).CrossRefGoogle Scholar
Venkatesh, T. A., Van Vliet, K. J., Giannakopoulos, A. E. and Suresh, S., Scr. Mater. 42, 833839 (2000).Google Scholar
Kang, J. J., Becker, A. A. and Sun, W., Int. J. Mech. Sci. 62, 3446 (2012).CrossRefGoogle Scholar
Khan, M. K., Hainsworth, S. V., Fitzpatrick, M. E. and Edwards, L., Comput. Mater. Sci. 49, 751760 (2010).Google Scholar
Peyrot, I., Bouchard, P.-O., Ghisleni, R. and Michler, J., J. Mater. Res. 24, 936947 (2009).CrossRefGoogle Scholar
Cheng, G., Hu, X., Choi, K. S. and Sun, X., submitted (2015).Google Scholar
Shan, Z. H. and Gokhale, A. M., Mater. Sci. Eng. A 361, 267274 (2003).Google Scholar
Atkinson, H. V. and Davies, S., Metall. Mater. Trans. A 31, 29813000 (2000).CrossRefGoogle Scholar
Fischer-Cripps, A. C., Introduction to Contact Mechanics, 2nd Ed. (Springer US, New York, 2007).Google Scholar
Ghassemi-Armaki, H., Maaß, R., Bhat, S. P., Sriram, S., Greer, J. R. and Kumar, K. S., Acta Mater. 62, 197211 (2014).Google Scholar
Nix, W. D. and Gao, H., J. Mech. Phys. Solids 46, 411425 (1998).Google Scholar
Rice, P. M. and Stoller, R. E, presented at the MRS Proceedings, 2000 (unpublished).Google Scholar
Sakharova, N., Fernandes, J., Antunes, J. and Oliveira, M., Int. J. Solids Struct. 46, 10951104 (2009).Google Scholar
Qian, L., Li, M., Zhou, Z., Yang, H. and Shi, X., Surf. Coat. Technol. 195, 264271 (2005).Google Scholar