Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-25T19:23:04.987Z Has data issue: false hasContentIssue false

Production of In, Au, and Pt nanoparticles by discharge plasmas in water for assessment of their bio-compatibility and toxicity

Published online by Cambridge University Press:  19 January 2016

Takaaki Amano*
Affiliation:
Faculty of Information Science and Electrical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
Thapanut Sarinont
Affiliation:
Faculty of Information Science and Electrical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
Kazunori Koga
Affiliation:
Faculty of Information Science and Electrical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
Miyuki Hirata
Affiliation:
Faculty of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
Akiyo Tanaka
Affiliation:
Faculty of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
Masaharu Shiratani
Affiliation:
Faculty of Information Science and Electrical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
*
Get access

Abstract

Nanoparticles have great potential for biomedical applications such as early detection, accurate diagnosis, and personalized treatment of cancer. Assessment of bio-compatibility and toxicity of nanoparticles body is an emerging topic for these applications. To study kinetics of nanoparticles in body, we synthesized indium, gold and platinum nanoparticles in aqueous suspension using pulsed electrical discharge plasmas in water. The average size of synthesized primary nanoparticles for indium, gold, and platinum are 6.2 nm, 6.7 nm, and 5.4 nm, whereas the average size of secondary nanoparticles for indium, gold, and platinum are 315 nm, 72.3 nm, and 151 nm, respectively. Synthesized indium nanoparticles are transported from subcutaneous to serum and brain. The indium content in serum for the synthesized nanoparticles is much higher than that for the In2O3 nanoparticles of 150 nm in primary size. For gold and platinum nanoparticles, preliminary examination of intratracheal administration revealed that administration of synthesized nanoparticles with 10 mg/kg BW (body weight) may cause bleedings and/or emphysema in lung.

Keywords

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Chen, C., Liang, B., Lu, D., Ogino, A., Wang, X., Nagatsu, M., Carbon, 48, 939 (2010).CrossRefGoogle Scholar
Zhang, L., Gu, F. X., Chan, J. M., Wang, A. Z., Langer, R.S., and Farokhzad, O.C., Clin. Pharmacol. Ther. 83, 761 (2008).CrossRefGoogle Scholar
Brigger, I., Dubernet, C., and Couvreur, P., Adv. Drug Deliv. Rev. 54, 631 (2005).CrossRefGoogle Scholar
Jordan, A., Scholz, R., Wust, P., Fähling, H., and Felix, R., J. Magn. Magn. Mater. 201, 413 (1999).CrossRefGoogle Scholar
Iwai, K., J. Jpn. Soc. Atmos. Environ. 35, 321 (2000). (in Japanese)Google Scholar
Watanabe, Y., Shiratani, M., Kubo, Y., Ogawa, I., Ogi, S., Appl. Phys. Lett. 53, 1263 (1988).CrossRefGoogle Scholar
Shiratani, M., Kawasaki, H., Fukuzawa, T., Yoshioka, T., Ueda, Y., Singh, S., Watanabe, Y., J. Appl. Phys. 79, 104 (1996).CrossRefGoogle Scholar
Shiratani, M, Koga, K, Iwashita, S, Uchida, G, Itagaki, N, Kamataki, K, J. Phys. D, 44, 174038 (2011).CrossRefGoogle Scholar
Seo, H., Wang, Y., Uchida, G., Kamataki, K., Itagaki, N., Koga, K., Shiratani, M., Electrochim. Acta., 95, 43 (2013).CrossRefGoogle Scholar
Tanaka, A., Hirata, M., Shiratani, M., Koga, K., and Kiyohara, Y., J. Occup. Health 54, 187 (2012).CrossRefGoogle Scholar
Tanaka, A., Hirata, M., Kiyohara, Y., Nakano, M., Omae, K., Shiratani, M., and Koga, K., Thin Solid Films, 2934, 518 (2010).Google Scholar
Burakov, V., Butsen, A., Hamisch, V., Misakov, P., Nevar, E., Rosenbaum, M., Savastenko, N., and Tarasenko, N.V., J. Nanopart. Res. 10, 881 (2008).CrossRefGoogle Scholar
Mardaniana, M., Nevar, A. A., Nedel’ko, M., Tarasenko, N. V., Eur. Phys. J. D 67, 208 (2013).CrossRefGoogle Scholar
Amano, T., Sarinont, T., Koga, K., Hirata, M., Tanaka, A., and Shiratani, M., J. Nanosci. Nanotechnol. 11, 9298 (2015).CrossRefGoogle Scholar
Balcon, N., Aanesland, A., and Boswell, R., Plasma Sources Sci. Technol. 16, 217 (2007).CrossRefGoogle Scholar
Torres, J., Palomares, J. M., Sola, A., van der Mullen, J. J. A. M., and Gamero, A., J. Phys. D 40, 5929 (2007).CrossRefGoogle Scholar
Hofman, S., van Gessel, A.H., Verreychen, T., and Bruggeman, P., Plasma Source Science and Technology 20, 065010 (2011).CrossRefGoogle Scholar
Pecora, R., J. Nanopart. Res. 2, 123 (2000).CrossRefGoogle Scholar
Murdock, R. C., Braydich-Stolle, L., Schrand, A. M., Schlager, J. J., Hussain, S. M., Toxicol. Sci. 101, 239 (2008).CrossRefGoogle Scholar
Yubero, C., Garcia, M.C., and Calzada, M.D., Spectrochimica Acta Part B. 61, 540 (2006).CrossRefGoogle Scholar
Chung, F. H., J. Appl. Cryst. 8, 17 (1975).CrossRefGoogle Scholar
Shifu, C., Xiaoling, Y., Huaye, Z., and Wei, L., J. Hazard. Mater. 180, 735 (2010).CrossRefGoogle Scholar