Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-10T22:23:29.090Z Has data issue: false hasContentIssue false

Preliminary Molecular Dynamics Studies of the Montmorillonite, Amylose, Fatty Acids and Water for Polymer-Clay Nanocomposite Modeling

Published online by Cambridge University Press:  23 January 2018

Felipe A. R. Silva*
Affiliation:
Laboratório de Estudos Estruturais Moleculares, Instituto de Química, Universidade de Brasília, Campus Darcy Ribeiro, 70910-900Brasília - DF, Brazil.
Maria J. A. Sales
Affiliation:
Laboratório de Pesquisa em Polímeros e Nanomateriais, Instituto de Química, Universidade de Brasília, Campus Darcy Ribeiro, 70910-900Brasília - DF, Brazil.
Leonardo G. Paterno
Affiliation:
Laboratório de Pesquisa em Polímeros e Nanomateriais, Instituto de Química, Universidade de Brasília, Campus Darcy Ribeiro, 70910-900Brasília - DF, Brazil.
Mohamed Ghoul
Affiliation:
Laboratoire Réactions et Génie des Procédés, Ecole Nationale Supérieure d’Agronomie et des Industries Alimentaires, Institut National Polytechnique de Lorraine, Université de Lorraine.54501, Vandœuvre-lès-Nancy, France.
Latifa Chebil
Affiliation:
Laboratoire Réactions et Génie des Procédés, Ecole Nationale Supérieure d’Agronomie et des Industries Alimentaires, Institut National Polytechnique de Lorraine, Université de Lorraine.54501, Vandœuvre-lès-Nancy, France.
Elaine R. Maia
Affiliation:
Laboratório de Estudos Estruturais Moleculares, Instituto de Química, Universidade de Brasília, Campus Darcy Ribeiro, 70910-900Brasília - DF, Brazil.
*
Get access

Abstract:

This work shows a part of a theoretical study of Polymer-Clay Nanocomposites (PCN) formed by an acetylated amylose segment and fatty acids present in the Pequi oil, a fruit from the Brazilian Cerrado, in aqueous medium, including or not, organophilized montmorillonite (MMT-O). The simulated systems aim to provide qualitative information about the molecular movement among diverse chemical species; their structural and behavioral correlations and essential intermolecular forces. The calculations were carried out by Molecular Mechanics and Dynamics methods with the Polymer Consistent Force Field-interface. Simulation results had shown behavioral differences between systems. Without MMT-O, the acetyl amylose residues quickly became coiled, most of the fatty acids cover its surface, and water molecules are stabilized over the polysaccharide portions free of fatty acids. With MMT-O the fatty acids show a potential plasticizing effect due to the greater compatibility between the components of the studied system, since the organic assemblage is strongly attracted by the electrostatic force of the clay. Besides, water molecules flow to the clay layer, while the non polar portion of fatty acids increase their flexibility, in spite to stay attached to acetyl amylose, progressively coiled, through hydrogen bonds. This behavior is interpreted as an improvement in the miscibility of the oil. The new knowledge acquired about these molecular systems encourages us to increase the models complexity, and undertake further studies in the design of PCNs with biopolymers.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References:

Halley, P. J.: in Biodegrad. Polym. Ind. Appl., edited by Smith, R. (Woodhead Publishing, 2005), pp. 140162.Google Scholar
Schlemmer, D., Angélica, R. S., and Sales, M. J. A., Compos. Struct. 92(9), 2066 (2010).Google Scholar
Ribeiro, A. C., Rocha, Â., Soares, R. M. D., Fonseca, L. P., and da Silveira, N. P., Carbohydr. Polym. 157, 267 (2017).CrossRefGoogle Scholar
Yang, J., Tang, K., Qin, G., Chen, Y., Peng, L., Wan, X., Xiao, H., and Xia, Q., Carbohydr. Polym. 166, 256 (2017).Google Scholar
Ghavami, M., Zhao, Q., Javadi, S., Jangam, J. S. D., Jasinski, J. B., and Saraei, N., Colloids Surfaces A Physicochem. Eng. Asp. 520, 324 (2017).CrossRefGoogle Scholar
Heinz, H., Lin, T. J., Kishore Mishra, R., and Emami, F. S., Langmuir 29(6), 1754 (2013).Google Scholar
Dassault Systèmes BIOVIA, Materials Studio, version 6.0. San Diego, CA, USA. (2012).Google Scholar
Gournis, D., Lappas, A., Karakassides, M. A., Többens, D., and Moukarika, A., Phys. Chem. Miner. 35(1), 49 (2008).Google Scholar
Shogren, R. L., Carbohydr. Polym. 29 (1), 57 (1996).Google Scholar
Supplementary material: File

Silva et al. supplementary material

Silva et al. supplementary material 1

Download Silva et al. supplementary material(File)
File 2.3 MB