Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-22T23:46:19.482Z Has data issue: false hasContentIssue false

Porous Carbon/CeO2 Nanoparticles Hybrid Material for High-Capacity Super-Capacitors

Published online by Cambridge University Press:  13 June 2017

Hoejin Kim*
Affiliation:
Department of Mechanical Engineering, University of Texas at El Paso, El Paso, TX 79968, USA.
Mohammad Arif Ishtiaque Shuvo
Affiliation:
Department of Mechanical Engineering, University of Texas at El Paso, El Paso, TX 79968, USA.
Hasanul Karim
Affiliation:
Department of Mechanical Engineering, University of Texas at El Paso, El Paso, TX 79968, USA.
Manjula I Nandasiri
Affiliation:
Pacific Northwest National Laboratory, Richland, WA 99352, USA
Ashleigh M Schwarz
Affiliation:
Pacific Northwest National Laboratory, Richland, WA 99352, USA
Murugesan Vijayakumar
Affiliation:
Pacific Northwest National Laboratory, Richland, WA 99352, USA
Juan C. Noveron
Affiliation:
Department of Chemistry, University of Texas at El Paso, El Paso, TX 79968, USA.
Tzu-liang Tseng
Affiliation:
Department of Industrial, Systems, and Manufacturing, University of Texas at El Paso, El Paso, TX 79968, USA.
Yirong Lin
Affiliation:
Department of Mechanical Engineering, University of Texas at El Paso, El Paso, TX 79968, USA.
*
Get access

Abstract

The increasing demand for energy storage devices has propelled research for developing efficient super-capacitors (SC) with long cycle life and ultrahigh energy density. Carbon-based materials are commonly used as electrode materials for SC. Herein, we report a new approach to improve the SC performance utilizing a Porous Carbon/Cerium Oxide nanoparticle (PC-CON) hybrid as electrode material synthesized via a low temperature hydrothermal method. Through this approach, charges can be stored not only via electrochemical double layer capacitance (EDLC) from PC but also through pseudo-capacitive effect from CeO2 nanoparticles (NPs). The electrode-electrolyte interaction due to the electrochemical properties of the electrolyte provides an enhanced voltage window for the SC. Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), X-ray Photoelectron Spectroscopy (XPS), and X-Ray Diffraction (XRD) measurements were used for the characterization of this PC/CeO2 hybrid material system. The testing results have shown that a maximum of 500% higher specific capacitance could be obtained using PC/CeO2 instead of using PC only.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Liu, M., Gan, L., Xiong, W., Xu, Z., Zhu, D., and Chen, L., J. of Mater. Che., 2, 25552562 (2014).Google Scholar
Shuvo, M. A. I., Khan, M. A. R., Karim, H., Morton, P., Wilson, T., and Lin, Y., ACS appl. mater. & inter., 5, 78817885 (2013).Google Scholar
Wang, D., Choi, D., Li, J., Yang, Z., Nie, Z., Kou, R., et al. ., ACS nano, 3, 907914, (2009).Google Scholar
Karim, H., Shuvo, M. A. I., Islam, M. T., Rodriguez, G., Sandoval, A., Nandasiri, M. I., SPIE Sma. Str. and Mater.+ Nond. Eval. and Heal.Mon., 94390I-94390I-6 (2015).Google Scholar
Shuvo, M. A. I., Khan, M. A. R., Karim, H., Morton, P., Wilson, T., Mendoza, M., SPIE Sma. Str. and Mater.+ Nond. Eval. and Heal.Mon., 868918-868918-9 (2013).Google Scholar
Shuvo, M. A. I., Rodriguez, G., Islam, M. T., Karim, H., Ramabadran, N., Noveron, J. C., J. of Appl. Phy., 118, 125102 (2015).Google Scholar
Rajib, M., Shuvo, M. A. I., Karim, H., Delfin, D., Afrin, S., and Lin, Y., Cer. Inter., 41, 18071813 (2015).Google Scholar
Mendoza, M., Rahaman Khan, M. A., Ishtiaque Shuvo, M. A., Guerrero, A., and Lin, Y., ISRN Nano., 2012 (2012).Google Scholar
Rajib, M., Martinez, R., Shuvo, M., Karim, H., Delfin, D., Afrin, S., Inter. J. of Appl. Cer. Tech . ( 2015).Google Scholar
Yang, L., Cheng, S., Ding, Y., Zhu, X., Wang, Z. L., and Liu, M., Nano let., 12, 321325 (2011).CrossRefGoogle Scholar
Shuvo, M. A. I., Tseng, T.-L. B., Khan, M. A. R., Karim, H., Morton, P., Delfin, D., J. of Appl. Phy., 114, 104306 (2013).Google Scholar
Shuvo, M. A. I., Karim, H., Rajib, M., Delfin, D., and Lin, Y., SPIE Sma. Str. and Mater.+ Nond. Eval. and Heal.Mon., 905808-905808-8 (2014).Google Scholar
XianáGuo, C. and MingáLi, C., Dalt. Trans., 40, 63886391 (2011).Google Scholar
Padmanathan, N. and Selladurai, S., RSC Adv., 4, 65276534 (2014).Google Scholar
Zhang, Y., Feng, H., Wu, X., Wang, L., Zhang, A., Xia, T., et al. ., Inter. J. of hydr. ener., 34, 48894899 (2009).Google Scholar
Zhi, M., Xiang, C., Li, J., Li, M., and Wu, N., Nanosca., 5, 7288 (2013).Google Scholar
Jiang, H., Ma, J., and Li, C., Adv. Mater., 24, 41974202 (2012).Google Scholar
Srivastava, A. K., CRC Pre, . (2014).Google Scholar
Sun, Y.-P., Fu, K., Lin, Y., and Huang, W., Acc. of Chem. Res., 35, 10961104 (2002).Google Scholar
Li, C., Sun, N., Ni, J., Wang, J., Chu, H., Zhou, H., et al. ., J. of Sol. Sta. Chem., 181, 26202625 (2008).Google Scholar
Jian, L., Xiaoqian, C., Alexey, S., and Michael, K., Grap., 2012 (2012).Google Scholar
Srivastava, M., Das, A. K., Khanra, P., Uddin, M. E., Kim, N. H., and Lee, J. H., J. of Mater. Chem. A, 1, 97929801 (2013).Google Scholar
Maensiri, S., Masingboon, C., Laokul, P., Jareonboon, W., Promarak, V., Anderson, P. L., Crys. gro. & des., 7, 950955 (2007).Google Scholar
Jamalzadeh, Z., Haghighi, M., and Asgari, N., Fron. of Envir. Sci. & Eng., 7, 365381 (2013).CrossRefGoogle Scholar
Chen, Y.-C., Hsu, Y.-K., Lin, Y.-G., Lin, Y.-K., Horng, Y.-Y., Chen, L.-C., Electro. Acta, 56, 71247130 (2011).Google Scholar
Arul, N. S., Mangalaraj, D., Rajendran, R., Grace, A. N., and Han, J. I., J. of Mater. Chem. A (2015).Google Scholar
Lang, X., Hirata, A., Fujita, T., and Chen, M., Nat. Nano., 6, 232236 (2011).Google Scholar
Wu, Z., Huang, X.-L., Wang, Z.-L., Xu, J.-J., Wang, H.-G., and Zhang, X.-B., Scien. rep., 4 (2014).Google Scholar
Gamby, J., Taberna, P., Simon, P., Fauvarque, J., and Chesneau, M., J. of Pow. Sou., 101, 109116 (2001).Google Scholar
Supplementary material: File

Kim supplementary material

Kim supplementary material

Download Kim supplementary material(File)
File 752.5 KB