Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-10T22:22:14.798Z Has data issue: false hasContentIssue false

Photonic upconversion in solution-processed Gd-based thin films for delayed quantum efficiency roll-off in a-Si flat panel image detectors

Published online by Cambridge University Press:  27 February 2019

Nidhi Dua
Affiliation:
Functional Materials and Device Laboratory, Department of Electrical Engineering, IIT-Delhi, Hauz Khas, New Delhi, India110 016
Soumen Saha
Affiliation:
Functional Materials and Device Laboratory, Department of Electrical Engineering, IIT-Delhi, Hauz Khas, New Delhi, India110 016
Madhusudan Singh*
Affiliation:
Functional Materials and Device Laboratory, Department of Electrical Engineering, IIT-Delhi, Hauz Khas, New Delhi, India110 016
*
Get access

Abstract

Amorphous Si (a-Si) is used for fabrication of commercial low-cost flat panel image detectors for radiographic applications such as computed tomography (CT) imaging. a-Si photodiodes are known to exhibit a rapid decrease in quantum efficiency near 750nm. While crystalline Si does not suffer from such an early decline, the large-area and low-cost constraints of medical imagers make it challenging and costly to use crystalline Si for such devices. In this work, we report on the development of a sensitive layer for upconversion from 785 nm to green region of the spectrum, which nearly matches the peak quantum efficiency of a-Si detectors. Various host materials have been extensively studied in literature with rare earth ions such as Er3+(emission: green+red), Tm3+(emission: blue), Ho3+(emission: red+green) along with Yb3+ as a sensitizer for upconversion to the visible regime at high incident optical power (∼100 mW) for colloidal solutions. We carried out a thermal decomposition synthesis of NaYF4:Yb(18%),Er(2%),Gd(15%) at moderate temperature (∼320°C), resulting in a nearly pure hexagonal phase material. This is confirmed by powder X-ray diffraction (PXRD) of the unannealed sample with a lattice constant (∼5.17 Å). High-resolution transmission electron microscopy (HRTEM) measurements reveal the formation of nearly spherical nanoparticles. The observed plane ([100]) inferred from lattice fringes in TEM data with a visibly estimated interplanar distance (4.4±1.6 Å) is in reasonable agreement with standard data (∼5.17 Å) for comparable NaYF4-based materials. Excitation (785 nm) of the deposited thin films of Gd-doped unannealed material at relatively low incident power (∼0.4 mW) exhibits a PL response in green (539 nm) and red (665 nm) region of the spectrum. Gd-based upconversion material based thin films are thus a feasible photonic material for potential effective extension of high quantum efficiency range in a-Si for flat panel image detectors.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References:

Antonuk, L.E., Radiographics 15, 993 (1995).CrossRefGoogle Scholar
Wyrsch, N. and Ballif, C., Semicond. Sci. Technol. 31, 103005 (2016).Google Scholar
Venkatachalam, R., in Asia-Pac. Conf. (Auckland, New Zealand, 2006), p. 5.Google Scholar
Parlevliet, D. and Moheimani, N.R., Aquat. Biosyst. 10, 4 (2014).CrossRefGoogle Scholar
Gardelis, S. and Nassiopoulou, A.G., Appl. Phys. Lett. 104, 183902 (2014).CrossRefGoogle Scholar
Bergmann, J., Heusinger, M., Andrä, G., and Falk, F., Opt. Express 20, A856 (2012).CrossRefGoogle Scholar
Rogalski, A., Prog. Quantum Electron. 27, 59 (2003).CrossRefGoogle Scholar
Zhao, W., Ristic, G., and Rowlands, J.A., Med. Phys. 31, 2594 (2004).CrossRefGoogle Scholar
Seibert, J.A., Pediatr. Radiol. 36, 173 (2006).CrossRefGoogle Scholar
Auzel, F., Chem. Rev. 104, 139 (2004).CrossRefGoogle Scholar
Wang, F. and Liu, X., Chem. Soc. Rev. 38, 976 (2009).CrossRefGoogle Scholar
Selvin, P.R., IEEE J. Sel. Top. Quantum Electron. 2, (1996).CrossRefGoogle Scholar
Chen, G., Ohulchanskyy, T.Y., Kumar, R., Ågren, H., and Prasad, P.N., ACS Nano 4, 3163 (2010).CrossRefGoogle Scholar
Wang, L. and Li, Y., Chem. Commun. 0, 2557 (2006).CrossRefGoogle Scholar
Gao, W., Zheng, H., Han, Q., He, E., and Wang, R., CrystEngComm 16, 6697 (2014).CrossRefGoogle Scholar
Jin, L.M., Chen, X., Siu, C.K., Wang, F., and Yu, S.F., ACS Nano 11, 843 (2017).CrossRefGoogle Scholar
Li, Z. and Zhang, Y., Nanotechnology 19, 345606 (2008).CrossRefGoogle Scholar
Wang, H.-Q. and Nann, T., ACS Nano 3, 3804 (2009).CrossRefGoogle Scholar
Wang, F., Han, Y., Lim, C.S., Lu, Y., Wang, J., Xu, J., Chen, H., Zhang, C., Hong, M., and Liu, X., Nature 463, 1061 (2010).CrossRefGoogle Scholar
Singh, V., Kumar Rai, V., and Haase, M., J. Appl. Phys. 112, 063105 (2012).CrossRefGoogle Scholar
Arnaoutakis, G., Marques-Hueso, J., Ivaturi, A., Fischer, S., Goldschmidt, J.C., Krämer, K., and Richards, B., Sol. Energy Mater. Sol. Cells 140, 217 (2015).CrossRefGoogle Scholar
Okyay, A.K., Nayfeh, A.M., Saraswat, K.C., Ozguven, N., Marshall, A., McIntyre, P.C., and Yonehara, T., in LEOS 2006 - 19th Annu. Meet. IEEE Lasers Electro-Opt. Soc. (2006), pp. 460461.Google Scholar
Paleki A., S.A., EJVES Short Rep. 32, 1 (2016).CrossRefGoogle Scholar
Coffey, V.C., Opt. Photonics News 22, 26 (2011).CrossRefGoogle Scholar
Lay, A., Wang, D.S., Wisser, M.D., Mehlenbacher, R.D., Lin, Y., Goodman, M.B., Mao, W.L., and Dionne, J.A., Nano Lett. 17, 4172 (2017).CrossRefGoogle Scholar
Dua, N., Saha, S., Mehra, M., and Singh, M., in Nanophotonic Mater. XV (International Society for Optics and Photonics, 2018), p. 1072003.Google Scholar
Kumar, R., Nyk, M., Ohulchanskyy, T.Y., Flask, C.A., and Prasad, P.N., Adv. Funct. Mater. 19, 853 (2009).Google Scholar
Xing, H., Bu, W., Zhang, S., Zheng, X., Li, M., Chen, F., He, Q., Zhou, L., Peng, W., Hua, Y., and Shi, J., Biomaterials 33, 1079 (2012).CrossRefGoogle Scholar
Nunez Nuria, O., Hernan, Miguez, Marta, Quintanilla, Eugenio, Cantelar, Fernando, Cusso, and Manuel, Ocana, Eur. J. Inorg. Chem. 2008, 4517 (2008).CrossRefGoogle Scholar
Ouyang, J., Yin, D., Cao, X., Wang, C., Song, K., Liu, B., Zhang, L., Han, Y. and Wu, M., Dalton Trans. 43, 14001 (2014).CrossRefGoogle Scholar
Wu, Y., Lin, S., Shao, W., Zhang, X., Xu, J., Yu, L. and Chen, K., RSC Adv. 6, 102869 (2016).CrossRefGoogle Scholar
Dong, B., Song, H., Yu, H., Zhang, H., Qin, R., Bai, X., Pan, G., Lu, S., Wang, F., Fan, L., and Dai, Q., J. Phys. Chem. C 112, 1435 (2008).CrossRefGoogle Scholar
Marble, K., Coker, Z., Yakovlev, V., in 2018 Joint Spring Meeting of the Texas Sections of APS, AAPT, and Zone 13 of the SPS (Bulletin of the American Physical Society 63.Google Scholar
Battiato, S., Rossi, P., Paoli, P., Malandrino, G., Inorg. Chem. 57, 15035 (2018).CrossRefGoogle Scholar
Cheng, Y.Y., Nattestad, A., Schulze, T.F., MacQueen, R.W., Fuckel, B., Lips, K., Wallace, G.G., Khoury, T., Crossley, M.J., Schmidt, T.W., Chem. Sci. 7, 559 (2016).CrossRefGoogle Scholar
Jia, H., Xu, C., Wang, J., Chen, P., Liu, X., Qiu, J., CrystEngComm 16, 4023 (2014).CrossRefGoogle Scholar