Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T11:48:33.947Z Has data issue: false hasContentIssue false

Photonic MOS Based on “Optical Property Inversion”

Published online by Cambridge University Press:  11 December 2015

Zhaolin Lu*
Affiliation:
Microsystems Engineering, Kate Gleason College of Engineering Rochester Institute of Technology, Rochester, New York, 14623, USA
Kaifeng Shi
Affiliation:
Microsystems Engineering, Kate Gleason College of Engineering Rochester Institute of Technology, Rochester, New York, 14623, USA
Peichuan Yin
Affiliation:
Microsystems Engineering, Kate Gleason College of Engineering Rochester Institute of Technology, Rochester, New York, 14623, USA
*
Get access

Abstract

Most dielectric materials have very weak electro-optic properties, whereas the optical properties of some plasmonic materials may be greatly tuned, especially around their plasma frequency, where dielectric constant is transiting between positive (“dielectric state”) and negative (“metallic state”) values. In this talk, we will review some of our recent work on electro-optical modulation and introduce a new concept, photonic MOS based on “optical property inversion”. This concept may provide inspiration for the development of nanophotonic devices. While the whole paper only discusses theory and modelling, some new experimental results will be presented in the on-site talk. Throughout this report, “static dielectric constant”, ɛ, refers to material dielectric constant in the DC or radio frequency (RF) regime; “optical dielectric constant”, ε, represents material dielectric constant in the near-infrared regime. This paper was re-written based on an Arxiv file [1].

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References Cited

Lu, Z. and Shi, K., “Photonic MOS Based on ‘Optical Property Inversion’,” arXiv:1504.07546 (2015).Google Scholar
Reed, G. T., Mashanovich, G., Gardes, F. Y., and Thomson, D. J., “Silicon optical modulators,” Nat. Photonics 4, 518526 (2010).Google Scholar
Lee, B. G., Biberman, A., Chan, J., and Bergman, K., “High-Performance Modulator and Switches for Silicon Photonic Networks-on-Chip,” IEEE J. Sel. Top. Quant. Electron. 16, 622 (2010).Google Scholar
Kuo, Y. H., Lee, Y. K., Ge, Y., Ren, S., Roth, J. E., Kamins, T. I., Miller, D. A. B., and Harris, J. S., “Strong quantum-confined Stark effect in germanium quantum-well structures on silicon,” Nature 437, 13341336 (2005).Google Scholar
Della Corte, F. G., Rao, S., Nigro, M. A., Suriano, F., and Summonte, C., “Electro-optically induced absorption in α-Si:H/α-SiCN waveguiding multistacks,” Opt. Express 16, 75407550 (2008).Google Scholar
Liu, J.., Beals, M., Pomerene, A., Bernardis, S., Sun, R., Cheng, J., Kimerling, L. C., and Michel, J., “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nature Photon. 2, 433437 (2008).Google Scholar
Chen, H.W., Kuo, Y. H., and Bowers, J. E., “25Gb/s hybrid silicon switch using a capacitively loaded traveling wave electrode,” Opt. Express 18, 10701075 (2010).Google Scholar
Rong, Y., Ge, Y., Huo, Y., Fiorentino, M., Tan, M.R.T., Kamins, T., Ochalski, T.J., Huyet, G., and Harris, J.S., “Quantum-confined Stark effect in Ge/SiGe quantum wells on Si,” IEEE J. Sel. Top. Quant. Electron. 16, 8592 (2010).CrossRefGoogle Scholar
Soref, R. and Bennett, B., “Electrooptical effects in silicon,” IEEE J. Quant. Electron. 23, 123129 (1987).Google Scholar
Yariv, A. and Yeh, P., Photonics: Optical Electronics in Modern Communications Ch. 9 (pp 406464), (Oxford University Press, 6th edition, 2006).Google Scholar
Wooten, E.L., Kissa, K.M., Yi-Yan, A., Murphy, E.J., Lafaw, D.A., Hallemeier, P.F., Maack, D., Attanasio, D.V., Fritz, D.J., McBrien, G.J., and Bossi, D.E., “A review of lithium niobate modulators for fiber-optic communication systems,” IEEE J. Sel. Top. Quantum Electron. 6, 6982 (2000).Google Scholar
Liu, A., Jones, R., Liao, L., Samara-Rubio, D., Rubin, D., Cohen, O., Nicolaescu, R., and Paniccia, M., “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615618 (2004).Google Scholar
Xu, Q., Schmidt, B., Pradhan, S., and Lipson, M., “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325327 (2005).Google Scholar
Jacobsen, R.S., Andersen, K.N., Borel, P.I., Fage-Pedersen, J., Frandsen, L.H., Hansen, O., Kristensen, M., Lavrinenko, A. V., Moulin, G., Ou, H., Peucheret, C., Zsigri, B., and Bjarklev, A., “Strained silicon as a new electro-optic material,” Nature 441, 199202 (2006).Google Scholar
Xu, Q., Manipatruni, S., Schmidt, B., Shakya, J., and Lipson, M., “12.5 Gbit/s carrier-injection-based silicon microring silicon modulators,” Opt. Express 15, 430436 (2007).Google Scholar
Teng, J., Dumon, P., Bogaerts, W., Zhang, H., Jian, X., Han, X., Zhao, M., Morthier, G., and Baets, R., “Athermal silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides,” Opt. Express 17, 1462714633 (2009).Google Scholar
Guha, B., Kyotoku, B. B. C., and Lipson, M., “CMOS-compatible athermal silicon microring resonators,” Opt. Express 18, 34873493 (2010).Google Scholar
Thomson, D. J., Gardes, F. Y., Hu, Y., Mashanovich, G., Fournier, M., Grosse, P., Fedeli, J-M., and Reed, G. T., “High contrast 40Gbit/s optical modulation in silicon,” Opt. Express 19, 1150711516 (2011).Google Scholar
Alloatti, L., Korn, D., Palmer, R., Hillerkuss, D., Li, J., Barklund, A., Dinu, R., Wieland, J., Fournier, M., Fedeli, J., Yu, H., Bogaerts, W., Dumon, P., Baets, R., Koos, C., Freude, W., and Leuthold, J., “42.7 Gbit/s electro-optic modulator in silicon technology,” Opt. Express 19, 1184111851 (2011).CrossRefGoogle Scholar
Dionne, J. A., Diest, K., Sweatlock, L. A., and Atwater, H. A., “PlasMOStor: A Metal-Oxide-Si Field Effect Plasmonic Modulator,” Nano Lett. 9, 897902 (2009).Google Scholar
Cai, W., White, J. S., and Brongersma, M. L., “Compact, high-speed and power-efficient electrooptic plasmonic modulators,” Nano Lett. 9, 44034411 (2009).Google Scholar
Enoch, S., Tayeb, G., Sabouroux, P., Guerin, N., and Vincent, P., “A Metamaterial for Directive Emission,” Phys. Rev. Lett. 89, 213902(4) (2002).Google Scholar
Garcia, N., Ponizovskaya, E. V., and Xiao, J. Q., “Zero permittivity materials: Band gaps at the visible,” Appl. Phys. Lett. 80, 11201122 (2002).Google Scholar
Ziolkowski, R. W., “Propagation in and scattering from a matched metamaterial having a zero index of refraction,” Phys. Rev. E 70, 046608(12) (2004).Google Scholar
Robusto, P. and Braunstein, R., “Optical measurements of the surface plasmon of indium-tin oxide,” Phys. Stat. Sol. 119, 155168 (1990).Google Scholar
Brewer, H. and Franzen, S., “Calculation of the electronic and optical properties of indium tin oxide by density functional theory,” Chem. Phys. 300, 285293 (2004).CrossRefGoogle Scholar
Rhodes, C., Franzen, S., Maria, J.P., Losego, M., Leonard, D. N., Laughlin, B., Duscher, G., and Weibel, S., “Surface plasmon resonance in conducting metal oxides,” J. Appl. Phys. 100, 054905(4) (2006).Google Scholar
Michelotti, F., Dominici, L., Descrovi, E., Danz, N., and Menchini, F., “Thickness dependence of surface plasmon polariton dispersion in transparent conducting oxide films at 1.55 μm,” Opt. Lett. 34, 839841 (2009).Google Scholar
West, P.R., Ishii, S., Naik, G.V., Emani, N.K., Shalaev, V.M., and Boltasseva, A., “Searching for better plasmonic materials,” Laser Photonics Rev. 4, 795808 (2010).Google Scholar
Noginov, M. A., Gu, L., Livenere, J., Zhu, G., Pradhan, A. K., Mundle, R., Bahoura, M., Barnakov, Y. A., and Podolskiy, V. A., “Transparent conductive oxides: Plasmonic materials for telecom wavelengths,” Appl. Phys. Lett. 99, 021101(3) (2011).Google Scholar
Naik, G. V. and Boltasseva, A., “A comparative study of semiconductor-based plasmonic metamaterials,” Metamaterials 5, 17 (2011).Google Scholar
Naik, G. V., Kim, J., and Boltasseva, A., “Oxides and nitrides as alternative plasmonic materials in the optical range,” Opt. Mat. Express. 1, 10901099 (2011).Google Scholar
Feigenbaum, E., Diest, K., and Atwater, H. A., “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano. Lett. 10, 21112116 (2010).Google Scholar
Sorger, V. J., Lanzillotti-Kimura, N. D., Ma, R. M., and Zhang, X., “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics, 1, 1722(2012).Google Scholar
Shi, K., Haque, R. R., Zhao, B., Zhao, R., and Lu, Z., “Broadband electro-optical modulator based on transparent conducting oxide,” Opt. Lett. 39, 49784981 (2014).Google Scholar
Lee, H. W., Papadakis, G., Burgos, S. P., Chandler, K., Kriesch, A., Pala, R., Peschel, U., and H. a Atwater, “Nanoscale Conducting Oxide PlasMOStor,” Nano Lett. 14, 64636468 (2014).Google Scholar
Sze, S. M. and Ng, Kwok K., “Physics of Semiconductor Devices (3rd Edition)”, Chapter 4, John Wiley & Sons, Inc.Google Scholar
Liu, X., et al. . “Quantification and impact of nonparabolicity of the conduction band of indium tin oxide on its plasmonic properties,” Appl. Phys. Lett. 105, 181117(4) (2014).Google Scholar
Lu, Z. and Zhao, W., “Nanoscale electro-optic modulators based on graphene-slot waveguides,” J. Opt. Soc. Am. B 29, 1490 (2012).Google Scholar
Lu, Z., Zhao, W., and Shi, K., “Ultracompact Electroabsorption Modulators Based on Tunable Epsilon-Near-Zero-Slot Waveguides,” IEEE Photonics J. 4, 735740 (2012).Google Scholar
Shi, K., Zhao, W., and Lu, Z., “Epsilon-near-zero-slot waveguides and their applications in ultrafast laser beam steering,” in SPIE OPTO (2014), p. 89800L–89800L.Google Scholar
Shi, K. and Lu, Z., “Optical modulators and beam steering based on electrically tunable plasmonic material,” J. Nanophotonics 9, 93793 (2015).Google Scholar
Almeida, V. R., Xu, Qianfan, Barrios, C. A., and Lipson, M., “Guiding and Confining Light in Void Nanostructure,” Opt. Lett. 29, 1209 (2004).CrossRefGoogle Scholar