Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-19T11:30:05.920Z Has data issue: false hasContentIssue false

Oxygen Anion Diffusion in Doped Ceria MxCe1-xO2-0.5x (M=Gd, Sm and Pr): A Molecular Dynamics Simulation Study

Published online by Cambridge University Press:  08 April 2019

Neetu Kumari
Affiliation:
Renewable Energy Centre (REC) Lab, Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi110016, India
Uzma Anjum
Affiliation:
Renewable Energy Centre (REC) Lab, Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi110016, India
M. Ali Haider*
Affiliation:
Renewable Energy Centre (REC) Lab, Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi110016, India
Suddhastawa Basu*
Affiliation:
Renewable Energy Centre (REC) Lab, Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi110016, India
*
*Corresponding Author, Email-id: [email protected], [email protected]
*Corresponding Author, Email-id: [email protected], [email protected]
Get access

Abstract

Molecular dynamics simulations were utilized to determine the oxygen anion diffusivity in pure ceria (CeO2) and doped ceria MxCe1-xO2-0.5x (M=Gd, Sm and Pr) with varying level of dopant concentration from 5-30% (x = 0.05-0.3). Doping with Gd showed an improvement in oxygen anion diffusivity value by two order of magnitude (D = 4.67x10-8 cm2/s at 1173 K) as compared to the undoped ceria (D = 1.33x10-10 cm2/s at 1173 K). 10% of doping level was estimated as the optimum concentration of all the dopants at which all of the doped ceria materials showed maximum diffusivity of oxygen anion. Among the three dopants studied, Pr was observed to show maximum diffusivity of oxygen anion in the temperature range of 773-1173 K of simulations.

Keywords

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bonura, G., Arena, F., Mezzatesta, G., Cannilla, C., Spadaro, L., Frusteri, F., Catal. Today. 171, 251 (2011).CrossRefGoogle Scholar
Henderson, M. A., Perkins, C.L., Engelhard, M.H., Thevuthasan, S., Peden, C.H.F., Surf. Sci. 526, 1 (2003).CrossRefGoogle Scholar
Nolan, M., Parker, S.C., Watson, G.W., Surf. Sci. 595, 223 (2005).CrossRefGoogle Scholar
Chueh, William C. and Haile, Sossina M., Phil. Trans. R. Soc. A 368, 3269 (2010).CrossRefGoogle Scholar
Kumari, N., Sinha, N., Haider, M.A., Basu, S., Electrochimica Acta 177, 21 (2015).CrossRefGoogle Scholar
Kumari, N., Haider, M.A., Agarwal, M., Sinha, N., Basu, S., J. Phys. Chem. C 120, 16626 (2016).CrossRefGoogle Scholar
Kumari, N., Haider, M.A., Sinha, N., Basu, S., ECS Transactions, 68, 155 (2015).CrossRefGoogle Scholar
Cheng, Z., Sherman, B.J., Lo, C.S., J. Chem. Phys. 138, 014702 (2013).CrossRefGoogle Scholar
Vanpoucke, D.E.P., Bultinck, P., Cottenier, S., Van Speybroeck, V., Van Driessche, I., J. Mater. Chem. A 2, 13723 (2014).CrossRefGoogle Scholar
Zha, S., Xia, C., Meng, G., J. Power Sources. 115, 44 (2003).CrossRefGoogle Scholar
Wang, S., Kobayashi, T., Dokiya, M., Hashimoto, T., J. Electrochem. Soc. 147, 3606 (2000).CrossRefGoogle Scholar
Yahiro, H., Eguchi, Y., Eguchi, K., Arai, H., J. Appl. Electrochem. 18, 527 (1988).Google Scholar
Coduri, M., Scavini, M., Brunelli, M., Pedrazzin, E., Masala, P., Solid State Ionics. 268, 150 (2014).CrossRefGoogle Scholar
Ismail, A., Hooper, J., Giorgi, J.B., Woo, T.K., Phys. Chem. Chem. Phys. 13, 6116 (2011).CrossRefGoogle Scholar
Chockalingam, R., Ganguli, A.K., Basu, S., J. Power Sources 250, 80 (2014).CrossRefGoogle Scholar
Green, R.D., Liu, C., Adler, S.B., Solid State Ionics 179, 647 (2008).CrossRefGoogle Scholar
Cheng, C.Y., Kelsall, G.H., Kleiminger, L., J Appl Electrochem 43, 1131 (2013).CrossRefGoogle Scholar
Baudin, M., Wojcik, M., Hermansson, K., Palmqvist, A.E.C., Muhammed, M., Chem. Phys. Lett. 335, 517 (2001).CrossRefGoogle Scholar
Gotte, A., Hermansson, K., Baudin, M., Surf. Sci. 552, 273 (2004).CrossRefGoogle Scholar
Huang, C.W., Wei, W.C.J., Chen, C.S., Chen, J.C., J. Eur. Ceram. Soc. 31, 3159 (2011).CrossRefGoogle Scholar
Gotte, D. Spangberg, K. Hermansson, M. Baudin, Solid State Ionics. 178, 1421 (2007).Google Scholar
Inaba, H., Sagawa, R., Hayashi, H., Kawamura, K., Solid State Ionics . 122, 95 (1999).CrossRefGoogle Scholar
Meyer, M., Nicoloso, N., Jaenisch, V., Phys. Rev. B. 56, 5961 (1997).CrossRefGoogle Scholar
Tuller, H.L., Bishop, S.R., Chen, D., Kuru, Y., Kim, J.-J., Stefanik, T.S., Solid State Ionics. 225, 194 (2012).CrossRefGoogle Scholar
Buckingham, R.A., Proc. R. Soc. A Math. Phys. Eng. Sci. 168, 264 (1938).Google Scholar
Hellman, O., Skorodumova, N. V. & Simak, S. I., Phys. Rev. Lett. 108, 135504 (2012).CrossRefGoogle Scholar
Vyas, S., Grimes, R.W., Gay, D.H., Rohl, A.L., J. Chem. Soc. Faraday Trans. 94, 427 (1998).CrossRefGoogle Scholar
Minervini, L., Zacate, M.O., Grimes, R.W., Solid State Ionics. 116, 339 (1999).CrossRefGoogle Scholar
Kidkhunthod, P., Barnes, a C., J. Phys. Conf. Ser. 190, 012076 (2009).CrossRefGoogle Scholar
Gunn, D., Allan, N., Purton, J., J. Mater. Chem. A. 2, 13407 (2014).CrossRefGoogle Scholar
Rushton, M.J.D., Chroneos, A., Sci. Rep. 4, 6068 (2015).CrossRefGoogle Scholar
Cui, Z., Sun, Y., Qu, J., Solid State Ionics. 226, 24 (2012).CrossRefGoogle Scholar
Sun, L., Marrocchelli, D., Yildiz, B., Nat. Commun. 6, 6294 (2015).CrossRefGoogle Scholar
Lane, J. A, Kilner, J. A, Solid State Ionics. 137, 927 (1999).Google Scholar
Manning, P., Solid State Ionics. 93, 125 (1996).CrossRefGoogle Scholar
Meyer, M., Nicoloso, N., Jaenisch, V., Phys. Rev. B. 56 5961 (1997).Google Scholar
Krishnamurthy, R., Yoon, Y.-G., Srolovitz, D.J., Car, R., J. Am. Ceram. Soc. 87, 1821 (2004).CrossRefGoogle Scholar
Krishnamurthy, R., Srolovitz, D.J., Kudin, K.N., Car, R., J. Am. Ceram. Soc. 88, 2143 (2005).CrossRefGoogle Scholar
Dholabhai, P.P., Anwar, S., Adams, J.B., Crozier, P.A., Sharma, R., Model. Simul. Mater. Sci. Eng. 20, 015004 (2012).CrossRefGoogle Scholar
Steele, B.C.H., J. Power Sources. 49, 1 (1994).Google Scholar
Neria, E., Fischer, S., and Karplus, M., J. Chem. Physics 105, 1902 (1996)CrossRefGoogle Scholar
Inaba, H., Tagawa, H., Solid State Ionics. 83, 1 (1996).CrossRefGoogle Scholar
Yoshida, H., Deguchi, H., Miura, K., Horiuchi, M., Inagaki, T., Solid State Ionics. 140, 191 (2001).CrossRefGoogle Scholar
Sameshima, S., Ono, H., Higashi, K., Sonada, K., Hirata, Y., Ikuma, Y., J. Ceram. Soc. Japan. 1066, 1060 (2000).CrossRefGoogle Scholar
Klarbring, J., Vekilova, O.Y., Nilsson, J.O., Skorodumova, N. V., Simak, S.I., Solid State Ionics . 296, 47 (2016).CrossRefGoogle Scholar
Shuk, P., Solid State Ionics. 116, 217 (1999).CrossRefGoogle Scholar
Nauer, M., Ftikos, C., Steele, B.C.H., J. Eur. Ceram. Soc. 14 493 (1994).CrossRefGoogle Scholar
Bishop, S.R., Tuller, H.L., Kuru, Y., Yildiz, B., J. Eur. Ceram. Soc. 31, 2351 (2011).Google Scholar
Kuru, Y., Bishop, S.R., Kim, J.J., Yildiz, B., Tuller, H.L., Solid State Ionics. 193, 1 (2011).CrossRefGoogle Scholar
Dholabhai, P.P., Anwar, S., Adams, J.B., Crozier, P., Sharma, R., Solid State Chem . 184, 811 (2011).CrossRefGoogle Scholar
Dholabhai, P.P., Adams, J.B., J. Mater. Sci. 47, 7530 (2012).Google Scholar
Hayashi, H., Sagawa, R., Inaba, H., Kawamura, K., Solid State Chem 131, 281 (2000).Google Scholar