Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-10T20:00:44.909Z Has data issue: false hasContentIssue false

Optothermally Tuned Charge Transfer Plasmons in Au-Ge2Sb2Te5 Core-Shell Assemblies

Published online by Cambridge University Press:  05 March 2018

Burak Gerislioglu*
Affiliation:
Department of Electrical and Computer Engineering, Florida International University, 10555 W Flagler St., Miami, FL33174, U.S.A.
Arash Ahmadivand
Affiliation:
Department of Electrical and Computer Engineering, Florida International University, 10555 W Flagler St., Miami, FL33174, U.S.A.
Nezih Pala
Affiliation:
Department of Electrical and Computer Engineering, Florida International University, 10555 W Flagler St., Miami, FL33174, U.S.A.
*
Get access

Abstract

Tunable plasmonic resonances across the visible and near infrared spectra have provided novel ways to develop next-generation nanophotonic devices. Here, by utilizing optothermally controllable phase-changing material (PCM), we studied highly tunable charge transfer plasmon (CTP) resonance modes. To this end, we have designed a two-member dimer assembly including gold cores and Ge2Sb2Te5 (GST) shells in distant, touching, and overlapping conditions. We successfully demonstrated that toggling between amorphous (dielectric) and crystalline (conductive) phases of GST allows for achieving tunable dipolar and CTP resonances along the near-infrared spectrum. The proposed dimer structures can help forming optothermally controlled devices without further morphological variations in the geometry of the design, and having strong potential for advanced plasmon modulation and fast data routing.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barnes, W. L., J. Opt. A. Pure Appl. Opt. 8, S87 (2006).Google Scholar
Gramotnev, D. K. and Bozhevolnyi, S. I., Nat. Photonics 4, 83 (2010).CrossRefGoogle Scholar
Chantler, C. T. and Bourke, J. D., J. Phys. Chem. A 118, 909 (2014).Google Scholar
Bao, Q. and Loh, K. P., ACS Nano 6, 3677 (2012).CrossRefGoogle Scholar
Novo, C., Funston, A. M. and Mulvaney, P., Nat. Nanotechnol. 3, 598 (2008).Google Scholar
Marinica, D. C., Kazansky, A. K., Nordlander, P., Aizpurua, J. and Borisov, A. G., Nano Lett. 12, 1333 (2012).Google Scholar
Tan, S. F., Wu, L., Yang, J. K., Bai, P., Bosman, M. and Nijhuis, C. A., Science 343, 1496 (2014).Google Scholar
Ahmadivand, A., Gerislioglu, B., Sinha, R., Karabiyik, M. and Pala, N., Sci. Rep. 7, 42807 (2017).Google Scholar
Gerislioglu, B., Ahmadivand, A., Karabiyik, M., Sinha, R. and Pala, N., Adv. Electron. Mater. 3, 8 (2017).Google Scholar
Gholipour, B., Zhang, J., MacDonald, K. F., Hewak, D. W. and Zheludev, N. I., Adv. Mater. 25, 3050 (2013).Google Scholar
Zheludev, N. I. and Kivshar, Y., Nat. Mater. 11, 917 (2012).Google Scholar
Bakan, G., Gerislioglu, B., Dirisaglik, F., Jurado, Z., Sullivan, L., Dana, A., Lam, C., Gokirmak, A. and Silva, H., J. Appl. Phys. 120, 164504 (2016).Google Scholar
Liu, J. and Wei, J., J. Appl. Phys. 106, 083112 (2009).Google Scholar
Zhang, T., Song, Z., Liu, B., Feng, S. and Chen, B., Solid State Electron. 51, 950 (2007).Google Scholar
Sebastian, A., Le Gallo, M. and Krebs, D., Nat. Commun. 5, 4317 (2014).Google Scholar
Zheng, F., Chen, Z. and Zhang, J., IEEE Microw. Guided Wave Lett. 9, 441 (1999).Google Scholar
Aspnes, D. E., Am. J. Phys. 50, 704 (1916).CrossRefGoogle Scholar
Palik, E. D., Handbook of optical constants of solids, (Academic press, San Diego, CA, 1998).Google Scholar
Johnson, P. B. and Christy, R. W., Phys. Rev. B 6, 4370 (1972).Google Scholar
Shportko, K., Kremers, S., Woda, M., Lencer, D., Robertson, J. and Wuttig, M., Nat. Mater. 7, 653 (2008).Google Scholar
Wu, L., Duan, H., Bai, P., Bosman, M., Yang, J. K. and Li, E., ACS Nano 7, 707 (2013).Google Scholar
Miroshnichenko, A. E. and Kivshar, Y. S., Nano Lett. 12, 6459 (2012).Google Scholar
Wen, F., Zhang, Y., Gottheim, S., King, N. S., Zhang, Y., Nordlander, P. and Halas, N.J., ACS Nano 9, 6428 (2015).Google Scholar
Jeans, S. J. H., The mathematical theory of electricity and magnetism (Cambridge University, 1908).Google Scholar