No CrossRef data available.
Article contents
Optimization of Copper Schottky Contacts on Nanocrystalline ZnO thin films by Atomic Layer Deposition
Published online by Cambridge University Press: 16 May 2016
Abstract
Contact metallization is an essential obstacle for utilizing low temperature achievable polycrystalline ZnO in any discrete devices and integrated circuits. To develop ZnO based semiconductor devices with advanced feature of flexibility, transparency and compatibility with low temperature processing, rectifying junctions must be fully developed. In this work, nanoscale polycrystalline ZnO thin films are fabricated with via low temperature (<200 °C) by atomic layer deposition (ALD). A vertical structure of bottom Schottky metallized diode is developed with copper (Cu) sputtered in room temperature. A control of Cu surface oxidation is realized with an in-situ remote plasma treatment. The results indicate that preparation of the copper surface substantially affects the electrical behavior of the diode. Thermal reliability of Cu metallized Schottky diode is subsequently carried out by annealing up to a maximum temperature of 300 °C before it breaks. This work considers the current transport mechanism evolved deviating current vs voltage (I-V) characteristics from conventional thermionic emission theory.
Keywords
- Type
- Articles
- Information
- Copyright
- Copyright © Materials Research Society 2016