Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-23T13:16:56.006Z Has data issue: false hasContentIssue false

One Side-Graphene Hydrogenation (Graphone): Substrate Effects

Published online by Cambridge University Press:  14 March 2016

Cristiano Francisco Woellner*
Affiliation:
Instituto de Física “Gleb Wataghin”, Universidade Estadual de Campinas, Campinas - SP, 13083-970, Brazil
Pedro Alves da Silva Autreto
Affiliation:
Instituto de Física “Gleb Wataghin”, Universidade Estadual de Campinas, Campinas - SP, 13083-970, Brazil Universidade Federal do ABC, Santo André-SP, 09210-580, Brazil
Douglas S. Galvao
Affiliation:
Instituto de Física “Gleb Wataghin”, Universidade Estadual de Campinas, Campinas - SP, 13083-970, Brazil
*
Get access

Abstract

Recent studies on graphene hydrogenation processes showed that hydrogenation occurs via island growing domains, however how the substrate can affect the hydrogenation dynamics and/or pattern formation has not been yet properly investigated. In this work we have addressed these issues through fully atomistic reactive molecular dynamics simulations. We investigated the structural and dynamical aspects of the hydrogenation of graphene membranes (one-side hydrogenation, the so called graphone structure) on different substrates (graphene, few-layers graphene, graphite and platinum). Our results also show that the observed hydrogenation rates are very sensitive to the substrate type. For all investigated cases, the largest fraction of hydrogenated carbon atoms was for platinum substrates. Our results also show that a significant number of randomly distributed H clusters are formed during the early stages of the hydrogenation process, regardless of the type of substrate. These results suggest that, similarly to graphane formation, large perfect graphone-like domains are unlikely to be formed. These findings are especially important since experiments have showed that cluster formation influences the electronic transport properties in hydrogenated graphene.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Novoselov, K. S., Geim, A. K., V Morozov, S., Jiang, D., Zhang, Y., V Dubonos, S., V Grigorieva, I. and Firsov, A. A., Science, 2004, 306, 666.CrossRefGoogle Scholar
Sofo, J., Chaudhari, A. and Barber, G., Phys. Rev. B, 2007, 75, 153401.CrossRefGoogle Scholar
Flores, M. Z. S., Autreto, P. A. S., Legoas, S. B. and Galvao, D. S., Nanotechnology, 2009, 20, 465704.CrossRefGoogle Scholar
Elias, D. C., Nair, R. R., Mohiuddin, T. M. G., Morozov, S. V, Blake, P., Halsall, M. P., Ferrari, a C., Boukhvalov, D. W., Katsnelson, M. I., Geim, a K. and Novoselov, K. S., Science, 2009, 323, 610.CrossRefGoogle Scholar
Zhou, J., Wang, Q., Sun, Q., Chen, X. S., Kawazoe, Y. and Jena, P., Nano Lett., 2009, 9, 3867.CrossRefGoogle Scholar
Van Duin, A. C. T., Dasgupta, S., Lorant, F. and Goddard, W. A., J. Phys. Chem. A, 2001, 105, 9396.CrossRefGoogle Scholar
S. N. Laboratories, LAMMPS Users Manual, 2014, vol. 209.Google Scholar
Lii, J.-H. and Allinger, N. L., J. Comput. Chem., 1991, 12, 186.CrossRefGoogle Scholar
Paupitz, R., Autreto, P. A. S., Legoas, S. B., Srinivasan, S. G., van Duin, A. C. T. and Galvão, D. S., Nanotechnology, 2013, 24, 035706.CrossRefGoogle Scholar
Nose, S., Nosé, S. and Nosé, S., J. Chem. Phys., 1984, 81, 511.CrossRefGoogle Scholar
Ray, S. C., Soin, N., Makgato, T., Chuang, C. H., Pong, W. F., Roy, S. S., Ghosh, S. K., Strydom, A. M. and McLaughlin, J. A., Sci. Rep., 2014, 4.Google Scholar