Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-10T21:43:04.476Z Has data issue: false hasContentIssue false

Ohmic contact formation to heavily boron-doped p+ diamond prepared by hot-filament chemical vapor deposition

Published online by Cambridge University Press:  20 June 2016

Shinya Ohmagari*
Affiliation:
Advanced Power Electronics Research Center (ADPERC), National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan.
Takeshi Matsumoto
Affiliation:
Advanced Power Electronics Research Center (ADPERC), National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan.
Hitoshi Umezawa
Affiliation:
Advanced Power Electronics Research Center (ADPERC), National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan.
Yoshiaki Mokuno
Affiliation:
Advanced Power Electronics Research Center (ADPERC), National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan.
*
Get access

Abstract

Diamond-based rectifiers are promising devices for the development of next-generation power electronics. However, presented device structures limit current operation as low as tens A, which hampers diamond from real industrial applications. One of the critical issues is poor availability of conductive (low-resistivity) substrates which can be used for vertical-type devices for high-output operations. Recently, we have successfully fabricated heavily boron-doped (p+) low-resistivity diamond by hot-filament chemical vapor deposition (HFCVD). Resistivity was monotonically decreased to 1.2 mΩcm with amount of doped boron. In this study, to further investigate potentials for electric applications, contact resistance between metal/p+ diamond was evaluated by transmission line model (TLM). From the current-voltage characteristics, low specific contact resistance of ∼10−7 Ωcm2 was demonstrated.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Volpe, P.N., Muret, P., Pernot, J., Omǹs, F., Teraji, T., Koide, Y., Jomard, F., Planson, D., Brosselard, P., Dheilly, N., Vergne, B., and Scharnholz, S., Appl. Phys. Lett. 97, 22 (2010).CrossRefGoogle Scholar
Ueda, K., Kawamoto, K., and Asano, H., Jpn. J. Appl. Phys. 53, 04EP05 (2014).CrossRefGoogle Scholar
Funaki, T., Hirano, M., Umezawa, H., and Shikata, S., IEICE Electron. Express. 9, 1835 (2012).Google Scholar
Traoré, A., Muret, P., Fiori, A., Eon, D., Gheeraert, E., and Pernot, J., Appl. Phys. Lett. 104, 052105 (2014).CrossRefGoogle Scholar
Umezawa, H., and Shikata, S., Jpn. J. Appl. Phys. 53, 04EP04 (2014).Google Scholar
Umezawa, H., Kato, Y., and Shikata, S., Appl. Phys. Express. 6, 011302 (2013).CrossRefGoogle Scholar
Tarelkin, S., Bormashov, V., Buga, S., Volkov, A., Teteruk, D., Kornilov, N., Kuznetsov, M., Terentiev, S., Golovanov, A., and Blank, V., Phys. Status Solidi. 212, 2621 (2015).CrossRefGoogle Scholar
Achard, J., Issaoui, R., Tallaire, A., Silva, F., Barjon, J., Jomard, F., and Gicquel, A., Phys. Status Solidi. 209, 1651 (2012).CrossRefGoogle Scholar
Bormashov, V.S., Tarelkin, S.A., Buga, S.G., Kuznetsov, M.S., Terentiev, S.A., Semenov, A.N., and Blank, V.D., Diam. Relat. Mater. 35, 19 (2013).CrossRefGoogle Scholar
Srimongkon, K., Ohmagari, S., Kato, Y., Amornkitbamrung, V., and Shikata, S., Diam. Relat. Mater. 63, 21 (2015).CrossRefGoogle Scholar
Ohmagari, S., Teraji, T., and Koide, Y., J. Appl. Phys. 110, 5 (2011).CrossRefGoogle Scholar
Teraji, T., Yamamoto, T., Watanabe, K., Koide, Y., Isoya, J., Onoda, S., Ohshima, T., Rogers, L.J., Jelezko, F., Neumann, P., Wrachtrup, J., and Koizumi, S., Phys. Status Solidi. 212, 2365 (2015).CrossRefGoogle Scholar
Bustarret, E., Gheeraert, E., and Watanabe, K., Phys. Status Solidi. 199, 9 (2003).CrossRefGoogle Scholar
Issaoui, R., Achard, J., Silva, F., Tallaire, A., Tardieu, A., Gicquel, A., Pinault-Thaury, M.A., and Jomard, F., Appl. Phys. Lett. 97, 17 (2010).CrossRefGoogle Scholar
Demlow, S.N., Rechenberg, R., and Grotjohn, T., Diam. Relat. Mater. 49, 19 (2014).CrossRefGoogle Scholar
Shikata, S., Diam. Relat. Mater. 65, 168 (2016).CrossRefGoogle Scholar
Ohmagari, S., Srimongkon, K., Yamada, H., Umezawa, H., Tsubouchi, N., Chayahara, A., Shikata, S., and Mokuno, Y., Diam. Relat. Mater. 58, 110 (2015).CrossRefGoogle Scholar
Ohmagari, S., and Mokuno, Y., 2016 MRS SPRING Meet. Exhib. EP15.1.03 (2016).CrossRefGoogle Scholar
Yokoya, T., Nakamura, T., Matsushita, T., Muro, T., Takano, Y., Nagao, M., Takenouchi, T., Kawarada, H., and Oguchi, T., Nature. 438, 647 (2005).CrossRefGoogle Scholar
Reeves, G.K., Solid. State. Electron. 23, 487 (1980).CrossRefGoogle Scholar
Nakanishi, J., Otsuki, A., Oku, T., Ishiwata, O., and Murakami, M., J. Appl. Phys. 76, 2293 (1994).CrossRefGoogle Scholar
Yokoba, M., Koide, Y., Otsuki, A., Ako, F., Oku, T., and Murakami, M., J. Appl. Phys. 81, 6815 (1997).CrossRefGoogle Scholar
YU, A. Y. C., Solid. State. Electron. 13, 239 (1970).CrossRefGoogle Scholar
Kono, S., Teraji, T., Kodama, H., Ichikawa, K., Ohnishi, S., and Sawabe, A., Diam. Relat. Mater. 60, 117 (2015).CrossRefGoogle Scholar
Baliga, B.J., Fundamentals of Power Semiconductor Devices, 2008.CrossRefGoogle Scholar