Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-23T09:11:55.333Z Has data issue: false hasContentIssue false

Numerical Modelling of Front Contact Alignment for High Efficiency Cd1-xZnxTe and Cd1-xMgxTe Solar Cells for Tandem Devices

Published online by Cambridge University Press:  18 July 2018

Geethika K. Liyanage
Affiliation:
Wright Center for Photovoltaics Innovation and Commercialization, Department of Physics and Astronomy, University of Toledo, Toledo, OH, 43606. USA.
Adam B. Phillips*
Affiliation:
Wright Center for Photovoltaics Innovation and Commercialization, Department of Physics and Astronomy, University of Toledo, Toledo, OH, 43606. USA.
Fadhil K. Alfadhili
Affiliation:
Wright Center for Photovoltaics Innovation and Commercialization, Department of Physics and Astronomy, University of Toledo, Toledo, OH, 43606. USA.
Michael J. Heben
Affiliation:
Wright Center for Photovoltaics Innovation and Commercialization, Department of Physics and Astronomy, University of Toledo, Toledo, OH, 43606. USA.
*
Get access

Abstract

Wide bandgap Cd1-xZnxTe (CZT) and Cd1-xMgxTe (CMT) have drawn attention as top cells in tandem devices. These materials allow tuning of the band gap over a wide range by controlling the Zn or Mg concentration with little alteration to the base CdTe properties. Historically, CdS has been used as a heterojunction partner for CZT or CMT devices. However, these devices show a significant lower open circuit voltage (VOC) than expected for wide bandgap absorbers. Recent modelling work suggests that poor band alignment between the CdS emitter and absorber results in a high concentration of holes at the interface, which increased recombination and limits the VOC. This recombination should be exacerbated for wider bandgap absorbers such as CZT and CMT. In this study, we use numerical simulations with SCAPS-1D software to investigate the band alignment in the front contacts for wider bandgap CdTe based absorbers. Results show that by replacing the CdS with a wide bandgap emitter layer, the VOC can be greatly improved, though under certain conditions, the fill factor remains sensitive to the location of the emitter conduction band. As a result, different transparent front contacts were also investigated to determine a device structure required to produce a high performance CZT or CMT top-cell for tandems devices.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Green, M. A., Emery, K., Hishikawa, Y., Warta, W., Dunlop, E. D., Levi, D. H. and Ho-Baillie, A. W. Y., Prog. Photovolt. Res. Appl. 25 (1), 313 (2017).CrossRefGoogle Scholar
Coutts, T. J., Emery, K. A. and Scott Ward, J., Prog. Photovolt. Res. Appl. 10 (3), 195203 (2002).CrossRefGoogle Scholar
Ferekides, C. S., Mamazza, R., Balasubramanian, U. and Morel, D. L., Thin Solid Films 480–481, 471476 (2005).CrossRefGoogle Scholar
McCandless, B. E., Buchanan, W. A. and Hanket, G. M., Proc. 4th IEEE World Conf. on Photovolt. Energy Conv., (2006).Google Scholar
Hyun Lee, S., Gupta, A., Wang, S., Compaan, A. D. and McCandless, B. E., Sol. Energy Mater. Sol. Cells 86 (4), 551563 (2005).CrossRefGoogle Scholar
Martinez, O. S., Regalado-Pérez, E., Mathews, N. R., Morales, E. R., Reyes-Coronado, D., Galvez, G. H. and Mathew, X., Thin Solid Films 582, 120123 (2015).CrossRefGoogle Scholar
Kosyachenko, L. A., Mykytyuk, T. I., Fodchuk, I. M., Maslyanchuk, O. L., Martinez, O. S., Pérez, E. R. and Mathew, X., Solar Energy 109, 144152 (2014).CrossRefGoogle Scholar
Song, T., Kanevce, A. and Sites, J. R., J. Appl. Phys. 119 (23), 233104 (2016).CrossRefGoogle Scholar
Yang, J.-H., Chen, S., Yin, W.-J., Gong, X. G., Walsh, A. and Wei, S.-H., Physical Review B 79 (24), 245202 (2009).CrossRefGoogle Scholar
Munshi, A. H., Kephart, J. M., Abbas, A., Shimpi, T. M., Barth, K. L., Walls, J. M. and Sampath, W. S., Sol. Energy Mater. Sol. Cells 176, 918 (2018).CrossRefGoogle Scholar
Burgelman, M., Nollet, P. and Degrave, S., Thin Solid Films 361, 527532 (2000).CrossRefGoogle Scholar
Liyanage, G. K., Grice, C. R., Phillips, A. B., Song, Z., Watthage, S. C., Franzer, N. D., Garner, S., Yan, Y. and Heben, M. J., 43rd IEEE Photovolt. Specialists Conf. (PVSC), (2016).Google Scholar
Liu, D., Ren, S., Ma, X., Liu, C., Wu, L., Li, W., Zhang, J. and Feng, L., RSC Advances 7 (14), 82958302 (2017).CrossRefGoogle Scholar
Mahabaduge, H. P., Rance, W. L., Burst, J. M., Reese, M. O., Meysing, D. M., Wolden, C. A., Li, J., Beach, J. D., Gessert, T. A., Metzger, W. K., Garner, S. and Barnes, T. M., Appl. Phys. Lett. 106 (13), 133501 (2015).CrossRefGoogle Scholar
Gloeckler, M., Fahrenbruch, A. L. and Sites, J. R., Proc. 3rd IEEE World Conf. on Photovolt. Energy Conv., (2003).Google Scholar
Rühle, S., Solar Energy 130, 139147 (2016).CrossRefGoogle Scholar