Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-23T05:18:20.907Z Has data issue: false hasContentIssue false

Number Density Descriptor on Extended-Connectivity Fingerprints Combined with Machine Learning Approaches for Predicting Polymer Properties

Published online by Cambridge University Press:  21 May 2018

Takuya Minami*
Affiliation:
Research Association of High-Throughput Design and Development for Advanced Functional Materials, Ibaraki, Japan
Yoshishige Okuno
Affiliation:
Research Association of High-Throughput Design and Development for Advanced Functional Materials, Ibaraki, Japan
*

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We developed a new type of polymer descriptor based on Extended Connectivity Fingerprints. The number densities, that are substructure numbers divided by the number of atoms in a polymer model, were employed. We found that this approach is superior in accurately predicting linear polymer properties, compared to the conventional approach, where just the substructure numbers are used as descriptors. In addition, dimension reduction and multiple replication of repeat unit were found to improve prediction accuracy. As a result, the novel descriptor based on the Extended Connectivity Fingerprints with machine learning approaches was found to achieve accurate prediction of the refractive indices of linear polymers, which is comparable to that by ab initio density functional theory. Although process-dependent properties such as mechanical properties were difficult to predict, the present approach was found to be applicable to prediction of substructure-dependent properties, for example, optical properties, thermal stabilities.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

References

REFERENCES:

Rajan, K.. Materials Today, 8, 38 (2005).CrossRefGoogle Scholar
Ramprasad, R., Batra, R., Pilania, G., Mannodi-Kanakkithodi, A., Kim, C.. npj comput. Mat. 3, 54 (2017).CrossRefGoogle Scholar
Gaultois, M. W., Sparks, T. D., Borg, C. K. H., Seshadri, R., Bonificio, W. D., and Clarke, D. R., Chem. Mat. 25, 25911 (2013).CrossRefGoogle Scholar
Gómez-Bombarelli, R., Aguilera-Iparraguirre, J., Hirzel, T. D., Duvenaud, D., Maclaurin, D., Blood-Forsythe, M. A., Chae, H. S., Einzinger, M., Ha, D.-G., Wu, T., Markopoulos, G., Jeon, S., Kang, H., Miyazaki, H., Numata, M., Kim, S., Huang, W., Hong, S. I., Baldo, M., Adams, R. P., Aspuru-Guzik, A., Nature Materials, 15, 1120 (2016).CrossRefGoogle Scholar
Seko, A., Togo, A., Hayashi, H., Tsuda, K., Chaput, L., Tanaka, I., Phys. Rev. Lett., 115, 205901 (2015)CrossRefGoogle Scholar
Kalidindi, S. R., Graef, M. D.., Annu. Rev. Mater. Res., 45, 171 (2015).CrossRefGoogle Scholar
Panchal, J. H., Kalidindi, S. R., McDowell, D. L., Computer-Aided Design, 45, 4 (2013).CrossRefGoogle Scholar
Yada, A., Nagata, K., Ando, Y., Matsumura, T., Ichinoseki, S., Sato, K., Chem. Phys. Lett., 47, 284 (2018).Google Scholar
Mannodi-Kanakkithodi, A., Pilania, G., Huan, T. D., Lookman, T., Ramprasad, R., Sci. Rep. 6:20952 (2016).CrossRefGoogle Scholar
Duchowicz, P. R., Fioressi, S. E., Bacelo, D. E., Saavedra, L. M., Toropova, A. P., Toropov, A. A., Chemometrics and Intelligent Laboratory Systems, 140, 86 (2015).CrossRefGoogle Scholar
Rogers, D., Hahn, M., J. Chem. Inf. Model. 50, 742 (2010).CrossRefGoogle Scholar
Tibshirani, R., J. R. Statist. Soc. B 73, 273 (2011).CrossRefGoogle Scholar
Weininger, D., J. Chem. Inf. Comput. Sci., 28, 31 (1988).CrossRefGoogle Scholar
RDKit: Open-Source Cheminformatics. Available at http://rdkit.org (accessed 15 April 2017).Google Scholar
Rasmussen, C. E. and Williams, C. K. I, Gaussian Processes for Machine Learning (The MIT Press, Cambridge, MA, 2006).Google Scholar
Scikit-learn: Machine Learning in Python. Available at http://scikit-learn.org. (accessed 1 Oct 2017).Google Scholar
Maekawa, S., Moorthi, K., J. Phys. Chem. B, 120, 2507 (2016).CrossRefGoogle Scholar
Polyinfo. Available at http://polymer.nims.go.jp (accessed 30 Oct 2017).Google Scholar
Kinjo, N., Ogata, M., Numata, S., thermoset resin, 8, 22 (1987).Google Scholar
Meijer, H. E. H., Govaert, L. E., Prog. Polym. Sci. 30, 915 (2005).CrossRefGoogle Scholar
Nilakantan, R., Bauman, N., Dixon, J., Venkataraghavan, R., J. Chem. Inf. Comput. Sci., 27, 82 (1987).CrossRefGoogle Scholar
Carhart, R.E., Smith, D.H., Venkataraghavan, R., J. Chem. Inf. Comput. Sci., 25, 64 (1985).CrossRefGoogle Scholar
Duvenaudy, D., Maclauriny, D., Aguilera-Iparraguirre, J., Gómez-Bombarelli, R., Hirzel, T., Aspuru-Guzik, A., Adams, R. P., Advances in Neural Information Processing Systems, p2215 (2015).Google Scholar