Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-16T17:21:52.619Z Has data issue: false hasContentIssue false

Nuclear Forensics of a Non-Traditional Sample: Neptunium

Published online by Cambridge University Press:  16 May 2016

Jamie L. Doyle*
Affiliation:
Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545
Daniel Schwartz
Affiliation:
Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545
Lav Tandon
Affiliation:
Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545
*
Get access

Abstract

Recent nuclear forensics cases have focused primarily on plutonium (Pu) and uranium (U) materials. By definition however, nuclear forensics can apply to any diverted nuclear material. This includes neptunium (Np), an internationally safeguarded material like Pu and U, that could offer a nuclear security concern if significant quantities were found outside of regulatory control. This case study couples scanning electron microscopy (SEM) with quantitative analysis using newly developed specialized software, to evaluate a non-traditional nuclear forensic sample of Np. The results of the morphological analyses were compared with another Np sample of known pedigree, as well as other traditional actinide materials in order to determine potential processing and point-of-origin.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Smith, D. K., Kristo, M. J., Niemeyer, S., Dudder, G. B., J. Radioanal. Nucl. Chem. 276 (2), 415419 (2008).Google Scholar
Kristo, M. J., Tumey, S. J., Nucl. Instrum. Methods Phys. Res. Sect. B 294, 656661 (2013).Google Scholar
Moody, K. J., Hutcheon, I. D., Grant, M. P., Nuclear Forensic Analysis. (CRC Press, Boca Raton, FL, 2005).Google Scholar
Mayer, K., Wallenius, M., Ray, I., Analyst 130, 433441 (2005).CrossRefGoogle Scholar
Tamasi, A. L., Cash, L. J., Mullen, T., Ross, A. R., Ruggerio, C. E., Scott, B. L., Wagner, G. L., Walensky, J. R., Zerkle, S. A., Wilkerson, M. P., J. Radioanal. Nucl. Chem. (2016).Google Scholar
Plaue, J., Ph.D., University of Nevada, Las Vegas, 2013.Google Scholar
Wallenius, M., Mayer, K., Ray, I., Forensic Sci. Int. 156, 5562 (2006).CrossRefGoogle Scholar
Mayer, K., Wallenius, M., Fanghanel, T., J. Alloys. Compd. 444-445, 5056 (2007).CrossRefGoogle Scholar
Tandon, L., et al. ., J. Radioanal. Nucl. Chem. 276 (2), 467473 (2008).Google Scholar
Nothwang, T. A., Neuman, A. D., Davis, C. C., Voit, S. L., Lopez, M. R., Martinez, A. C., JOM, 16671672 (2008).Google Scholar
Anderson-Cook, C., Burr, T., Hamada, M. S., Ruggerio, C., Thomas, E. V., Chemom. Intell. Lab. Syst. 149, 107117 (2015).Google Scholar
Ho Mer Lin, D., Ph.D. Thesis, Ruperto-Carola University of Heidelberg, 2015.Google Scholar
Hutcheon, I., Kristo, M., Knight, K., Report No. LLNL-CONF-679869, 2015.Google Scholar
Burr, T., Stanbro, W. D., Charlton, W., J. Nuc. Sci. Technol. 38 (3), 209216 (2001).Google Scholar
(Center for Nonproliferation Studies, Nuclear Threat Initiative, 2011), Vol. 2015.Google Scholar
Wallenius, M., Lutzenkirchen, K., Mayer, K., Ray, I., Aldave de las Heras, L., Betti, M., Cromboom, O., Hild, M., Lynch, B., Nicholl, A., Ottmar, H., Rasmussen, G., Schubert, A., Tamborini, G., Thiele, H., Wagner, W., Walker, C., Zuleger, E., Alloys, J.. Compd. 444-445, 5762 (2007).Google Scholar
Duffey, J. M., Livingston, R. R., Report No. WSRC-TC-2003-00388-R0, 2003.Google Scholar
Rankin, D. T., Burney, G. A., Smith, P. K., Sisson, R. D., in American Ceramic Society Bulletin (1977), Vol. 56, pp. 478–483.Google Scholar
Rankin, D. T., Burney, G. A., Smith, P. K., Sisson, R. D., Report No. DP-MS-75–119, 1976.Google Scholar
Hill, B. C., Livingston, R. R., Report No. WSRC-TR-2004–00296, 2004.Google Scholar
Burney, G. A., Dukes, E. K., Report No. DP-594, 1961.Google Scholar
Yarbro, S. L., Dunn, S. L., Schreiber, S. B., Report No. LA-11890, 1991.Google Scholar
Daniel, W. E., Report No. SRNL-TR-2011–00334, 2012.Google Scholar
Machuron-Mandard, X., Madic, C., J. Alloys. Compd. 235, 216224 (1996).Google Scholar
Fahey, J. A., in The Chemistry of the Actinide Elements, edited by Katz, J. J., Seaborg, G. T., Morss, L. R., (Springer, Netherlands, 1986), Vol. 1, pp. 443498.Google Scholar
Yoshida, Z., Johnson, S. G., Kimura, T., Krsul, J. R., in The Chemistry of the Actinide and Transactinide Elements, edited by Morss, L. R., Edelstein, N. M., Fuger, J., (Springer, The Netherlands, 2006).Google Scholar
Ruggiero, C. E., Porter, R. B., Report No. LA-UR-14–23586, 2014.Google Scholar
Ruggiero, C. E., Porter, R. B., Report No. LA-UR-14–23579, 2014.Google Scholar
Smith, P. K., Burney, G. A., Rankin, D. T., Bickford, D. F., Sisson, R. D., presented at the Sixth International Materials Symposium, Berkely, California, 1976 (unpublished).Google Scholar
Doyle, J. L., Kuhn, K., Byerly, B., Colletti, L., Fulwyler, J., Garduno, K., Keller, R., Lujan, E., Martinez, A., Porterfield, D., Spencer, K., Stanley, F., Townsend, L., Thomas, M., Walker, L., Xu, N., Tandon, L., (2016) Submitted Google Scholar