Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-25T21:42:35.624Z Has data issue: false hasContentIssue false

Novel Hierarchical YBO3 :Eu3+ Nanocrystals Synthesized by Folic Acid Assisted Hydrothermal Process

Published online by Cambridge University Press:  09 December 2019

Xianj. Xing
Affiliation:
School of Mechanical Engineering , Hefei University of Technology, Hefei, Anhui 230009, China
Shan Li
Affiliation:
School of Chemistry and Chemical Engineering , Hefei University of Technology , Hefei, Anhui 230009, China
Yuq. Song
Affiliation:
School of Chemistry and Chemical Engineering , Hefei University of Technology , Hefei, Anhui 230009, China
Yingz. Ge
Affiliation:
School of Automobile and Transportation Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
Xuef. Zhang
Affiliation:
School of Mechanical Engineering , Hefei University of Technology, Hefei, Anhui 230009, China
Wen Jiang
Affiliation:
School of Food and Biological Engineering ,Hefei University of Technology, Hefei, Anhui 230009, China
Xianwen. Zhang*
Affiliation:
School of Automobile and Transportation Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
*
Get access

Abstract

YBO3:Eu3+ crystals with flower-like hierarchitecture are readily synthesized through a folic acid assisted hydrothermal process using polyborate precursors in the aqueous solution. It was found that the pH value , borate/yittrium ratio and the mass of folic acid take effects on the morphology and photoluminescence emission intensity of YBO3:Eu3+ crystals. The product with the small flower-like hierarchitecture was obtained under the conditions of pH value at 9, borate/yittrium ratio at 2 and the mass of folic acid at 0.44 g, showing the strongest photoluminescence intensity. The growth process of the YBO3:Eu3+ flowers and microflowers was invesitgated based on the time-dependent experiments, which showed that the growth mechanism of the flower-like hierarchitecture follows an in situ growth rather than self-assembly process as reported previously. Such a hydrothermal route using folic acid as a capping agent may provide a green and effective method for fabricating useful and complex 3D architectures of LEDs phosphors.

Type
Articles
Copyright
Copyright © Materials Research Society 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFRENCES

Zhang, C. L., Lu, B. R., Cao, F. H., Wu, Z.Y., Zhang, W., Xin, X., Yu, Z.L., CongS, H . P.. Yu, H., Nano Energy.55, 226-233(2019).CrossRefGoogle Scholar
Chen, L. F., Ma, S. X., Feng, Y., Zhang, J., Xin, S., Yu, S.H., Nano Res. 10, 1-11(2017).CrossRefGoogle Scholar
Zhan, H. J., Wu, K.J., Hu, Y. L., Liu, J. W., Li, H., Guo, X., Xu, J., Yang, Y., Chem. 5, 1871-1882(2019).CrossRefGoogle Scholar
Wu, Z. Y., Yin, P., Ju, H. X., Chen, Z. Q., Li, C., Li, S.C., Liang, H. W., Research 2019, 6262719Google ScholarPubMed
Gao, F. , Lu, Q.Y. ,Meng, X. K., and Komarneni, S., J. Phys. Chem. C. 112, 1335913365(2008).CrossRefGoogle Scholar
Li, C. Y. , Du, X. D. , Shi, Y. R. , Huang, J. B. , Jin, L. , Wang, Z. L. , Zhang, X. C., Journal of Alloys and Compounds. 783, 813-819 (2019).CrossRefGoogle Scholar
Mou, F. Z., Guan, J. G., Sun, Z. G., Fan, X. A., Tong, G. X., J. Solid State Chem. 183, 736(2010).CrossRefGoogle Scholar
Cao, L. N., Liu, W., Luo, Q. Q., Yin, R. T., Wang, B., Weissenrieder, J., Soldemo, M., Yan, H., Lin, Y., Nature. 565, 631-635 (2019).CrossRefGoogle Scholar
Ramirez, J. P., Christensen, C. H., Egeblad, K., Christensen, C. H., Groen, J. C., Chem. Soc. Rev. 37, 2530(2008).CrossRefGoogle Scholar
Zhang, X.W., Fu, Y. X., Zhao, Z., Yang, J., Li, N., Zhang, M. F., Journal of Luminescence.194, 311-315(2018).CrossRefGoogle Scholar
Park, S. J., Je, B. S., Jang, J.W., Oh, M. S., Koo, M. S., Yang, S. J., Yang, H. K., Journal of Alloys and Compounds.789, 367-374(2019).CrossRefGoogle Scholar
Qiu, W.M., Xu, M. S., Yang, X., Chen, F., Nan, Y.X., Chen, H. Z., Journal of Alloys and Compounds.509, 8413-8420(2011).CrossRefGoogle Scholar
Seh, Z. W.. et al. Science. 355, eaad4998 (2017).CrossRefGoogle Scholar
Höppe, H. A., Stadler, F., Oeckler, O.,Schnick, W., Angew. Chem. Int. Ed. 43, 5540(2004).CrossRefGoogle Scholar
Stadler, F., Oeckler, O., Höppe, H. A., Möller, M. H., Pöttgen, R., Mosel, B. D., Schmidt, P., Duppel, V., Simon, A., Schnick, W., Chem. Eur. J. 12, 6984(2006).CrossRefGoogle Scholar
Kaufmann, U., Kunzer, M., Köhler, K., Obloh, H., Pleschen, W., Schlotter, P., Wagner, J., Ellens, A., Rossner, W., Kobusch, M., Phys. Status Solidi A. 192, 246(2002).3.0.CO;2-I>CrossRefGoogle Scholar
Nakamura, S., Fasol, G., The Blue Laser Diode, Springer, Berlin, 1997.CrossRefGoogle Scholar
Zhang, X., Marathe, A., Sohal, S., Holtz, M., Davis, M., Hope-Weeks, L. J., Chaudhuri, J., J. Mater. Chem. 22, 6485(2012).CrossRefGoogle Scholar
Zhang, X., Zhao, Z., Zhang, X., Marathe, A., Cordes, D., Weeks, B. and Chaudhuri, J., J. Mater. Chem.C. 1, 7202(2013).CrossRefGoogle Scholar
Zhang, J., Lin, J., J. Cryst. Growth . 271, 207(2004).CrossRefGoogle Scholar
Chen, L., Cheng, H., Liu, G., Duan, X., J. Am. Ceram. Soc. 91, 591(2008).CrossRefGoogle Scholar
Li, Z., Zeng, J., Li, Y., Small. 3, 438(2007).CrossRefGoogle Scholar
Henkes, A., Schaak, R., J. Solid State Chem. 181, 3264(2008).CrossRefGoogle Scholar
Gilstrap, R. A. Jr., Capozzi, C. J., Carson, C. G., Gerhardt, R. A. and Summers, C. J., Adv. Mater. 20 ,41634166 (2008).Google Scholar