Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-22T20:55:24.826Z Has data issue: false hasContentIssue false

NiCo2O4 bricks as anode materials with high lithium storage property

Published online by Cambridge University Press:  08 April 2019

Hui Wang
Affiliation:
School of Physics and Technology, and MOE Key Laboratory of Artificial Micro- and Nano-structures, Wuhan University, Wuhan430072, China.
Youning Gong
Affiliation:
School of Physics and Technology, and MOE Key Laboratory of Artificial Micro- and Nano-structures, Wuhan University, Wuhan430072, China.
Delong Li
Affiliation:
School of Physics and Technology, and MOE Key Laboratory of Artificial Micro- and Nano-structures, Wuhan University, Wuhan430072, China.
Qiang Fu
Affiliation:
Center for Electron Microscopy, Wuhan University, Wuhan430072, China.
Chunxu Pan*
Affiliation:
School of Physics and Technology, and MOE Key Laboratory of Artificial Micro- and Nano-structures, Wuhan University, Wuhan430072, China. Center for Electron Microscopy, Wuhan University, Wuhan430072, China.
*
*E-mail: [email protected] (C. Pan); Tel: +86-27-68752481 ext. 8031
Get access

Abstract

In this study, a novel brick-like NiCo2O4 material was synthesized via a facile hydrothermal method. The as-prepared NiCo2O4 material possessed high porosity with the BET specific surface area of 58.33 m2/g, and its pore size distribution was in a range of 5-15 nm with a dominant pore diameter of 10.7 nm. The electrochemical performance of the NiCo2O4 was further investigated as anode material for lithium-ion battery. The NiCo2O4 anode possessed a high lithium storage capacity up to 2353.0 mAh/g at the current density of 100 mA/g. Even at the high rate of 1 A/g, a reversible capacity of ∼600 mAh/g was still retained, and an average discharge capacity of ∼1145 mAh/g could be recovered when the current density was reduced back to 150 mA/g. Due to the simple and cost-effective process, the NiCo2O4 bricks anode material shows great potential for further large-scale applications on the area of lithium-ion battery.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

#

Hui Wang and Youning Gong contribute equally to the article.

References

Winter, M., Brodd, R. J., Chem. Rev. 104, 4245-4269 (2004).CrossRefGoogle Scholar
Armand, M., Tarascon, J. M., Nature 451, 652 (2008).CrossRefGoogle Scholar
Scrosati, B., Garche, J., J. Power Sources 195, 2419-2430 (2010).CrossRefGoogle Scholar
Dunn, B., Kamath, H., Tarascon, J. M., Science 334, 928-935 (2011).CrossRefGoogle Scholar
Etacheri, V., Marom, R., Elazari, R., Salitra, G., Aurbach, D., Energy Environ. Sci. 4, 3243-3262 (2011).CrossRefGoogle Scholar
Kang, K., Meng, Y. S., Bréger, J., Grey, C.P., Ceder, G., Science, 311, 977-980 (2006).CrossRefGoogle Scholar
Ji, L., Lin, Z., Alcoutlabi, M., Zhang, X., Energy Environ. Sci. 4, 2682-2699 (2011).CrossRefGoogle Scholar
Nitta, N., Yushin, G., Part. Part. Syst. Charact. 31, 317-336 (2014).CrossRefGoogle Scholar
Nitta, N., Yushin, G., Part. Part. Syst. Charact. 31, 317-336 (2014).CrossRefGoogle Scholar
Ohzuku, T., Iwakoshi, Y., Sawai, K., J. Electrochem. Soc. 140, 2490-2498 (1993).CrossRefGoogle Scholar
Liu, J., Xia, H., Xue, D., Lu, L., J. Am. Chem. Soc. 131, 12086-12087 (2009).CrossRefGoogle Scholar
Lei, D., Zhang, M., Qu, B., Chen, L., Wang, Y., Zhang, E., Xu, Z., Li, Q., Wang, T., Nanoscale 4, 3422-3426 (2012).CrossRefGoogle Scholar
Courtel, F.M., Duncan, H., Abu-Lebdeh, Y., Davidson, I.J., J. Mater. Chem. 21, 10206-10218 (2011).CrossRefGoogle Scholar
Zhang, J., Yu, A., Sci. Bull. 60, 823-838 (2015).CrossRefGoogle Scholar
Guo, B., Li, C., Yuan, Z., J. Phys. Chem. C 114, 12805-12817 (2010).CrossRefGoogle Scholar
Wang, X., Guan, H., Chen, S., Li, H., Zhai, T., Tang, D., Bando, Y., Golberg, D., Chem. Commun. 47, 12280-12282 (2011).CrossRefGoogle Scholar
Wei, T., Chen, C., Chien, H., Adv. Mater. 22, 347 (2010).CrossRefGoogle Scholar
Liu, Z.Q., Xiao, K., Xu, Q.Z., Li, N., Su, Y.Z., Wang, H.J., Chen, S., RSC Adv . 3, 4372-4380 (2013).CrossRefGoogle Scholar
Liu, J., Liu, C., Wan, Y., Liu, W., Ma, Z., Ji, S., Wang, J., Zhou, Y., Hodgson, P., Li, Y., CrystEngComm 15,1578-1585 (2013).CrossRefGoogle Scholar
Li, J., Xiong, S., Liu, Y., Ju, Z., Qian, Y., ACS Appl. Mater. Interfaces 5, 981-988 (2013).CrossRefGoogle Scholar
Kim, J.-G., Pugmire, D.L., Battaglia, D., Langell, M.A., Appl. Surf. Sci. 165, 70-84 (2000).CrossRefGoogle Scholar
Marco, J.F., Gancedo, J.R., Gracia, M., Gautier, J.L., Ríos, E., Berry, F.J., J. Solid State Chem. 153, 74-81 (2000).CrossRefGoogle Scholar
Lei, Y., Li, J., Wang, Y., Gu, L., Chang, Y., Yuan, H., Xiao, D., ACS Appl. Mater. Interfaces 6, 1773-1780 (2014).CrossRefGoogle Scholar
Li, D., Gong, Y., Zhang, Y., Luo, C., Li, W., Fu, Q., Pan, C., Sci. Rep. 5, 12903 (2015).CrossRefGoogle Scholar
Gu, L., Qian, L., Lei, Y., Wang, Y., Li, J., Yuan, H., Xiao, D., J. Power Sources 261, 317-323 (2014).CrossRefGoogle Scholar
Chen, Y., Qu, B., Hu, L., Xu, Z., Li, Q., Wang, T., Nanoscale 5, 9812-9820 (2013).CrossRefGoogle ScholarPubMed
Guo, H., Liu, L., Li, T., Chen, W., Liu, J., Guo, Y., Guo, Y., Nanoscale 6, 5491-5497 (2014).CrossRefGoogle Scholar