No CrossRef data available.
Article contents
Nickel nano-dot arrays on silicon substrate fabrication and surface charge distribution
Published online by Cambridge University Press: 23 April 2020
Abstract
We report a simple and feasible technique for the formation of well-distributed nickel nanodot arrays on both oxidized and unoxidized silicon substrate by a conventional annealing process. The shape and distribution of nickel nanodots were maintained by adjusting annealing temperature, time and the SiO2 buffer layer thickness in between nickel film and the silicon substrate. The diffusion of nickel into the silicon is significantly reduced when the nickel film on the oxidized silicon substrate is annealed at high temperature. From this conventional annealing technique, we achieve a maximum nickel nanodots density up to (7.94±1.92) nanodot counts/µm2 on the oxidized silicon substrate with a well-defined spherical shape by adjusting the thickness of nickel film as well as buffer SiO2 layer. In the next experiment, the surface charge distribution on the nickel nanodot arrays were characterized through the Kelvin probe force microscope (KPFM) on tapping mode. It is found that the nickel nanodots can store and release the electric charges under an applied bias voltage.
- Type
- Articles
- Information
- Copyright
- Copyright © Materials Research Society 2020