Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-10T22:05:52.267Z Has data issue: false hasContentIssue false

Nanodroplets Impacting on Graphene

Published online by Cambridge University Press:  23 March 2016

Ygor M. Jaques*
Affiliation:
Applied Physics Department, University of Campinas, Campinas, SP 13081-970, Brazil
Gustavo Brunetto
Affiliation:
Applied Physics Department, University of Campinas, Campinas, SP 13081-970, Brazil
Douglas S. Galvão
Affiliation:
Applied Physics Department, University of Campinas, Campinas, SP 13081-970, Brazil
*
Get access

Abstract

The unique and remarkable properties of graphene can be exploited as the basis toa wide range of applications. However, in spite of years of investigations thereare some important graphene properties that are not still fully understood, asfor example, its wettability. There are controversial reported results whethergraphene is really hydrophobic or hydrophilic. In order to address this problemwe have carried out classical molecular dynamics simulations of waternanodroplets shot against graphene surface. Our results show that the contactangle values between the nanodroplets and graphene surfaces depend on theinitial droplet velocity value and these angles can change from 86°(hydrophobic) to 35° (hydrophilic). Our preliminary results indicatethat the graphene wettability can be dependent on spreading liquid dynamics andwhich can explain some of the apparent inconsistencies reported in theliterature.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Torrisi, F. and Coleman, J. N., Nature Nanotech. 9, 738 (2014).CrossRefGoogle Scholar
Liu, J., Nature Nanotech. 9, 739 (2014).Google Scholar
Rao, C. N. R., Gopalakrishnan, K., and Maitra, U., ACS Appl. Mater. Interfaces 7, 7809 (2015).Google Scholar
Ahn, J.-H. and Hong, B. H., Nature Nanotech. 9, 737 (2014).Google Scholar
Blees, M. K., Barnard, A. W., Rose, P. a., Roberts, S. P., McGill, K. L., Huang, P. Y., Ruyack, A. R., Kevek, J. W., Kobrin, B., Muller, D. a., and McEuen, P. L., Nature 524, 204 (2015).Google Scholar
Baringhaus, J., Ruan, M., Edler, F., Tejeda, A., Sicot, M., Taleb-Ibrahimi, A., Li, A.-P., Jiang, Z., Conrad, E. H., Berger, C., Tegenkamp, C., and de Heer, W. A., Nature 506, 349 (2014).Google Scholar
Lee, J.-H., Loya, P. E., Lou, J., and Thomas, E. L., Science 346, 1092 (2014).CrossRefGoogle ScholarPubMed
Xin, G., Yao, T., Sun, H., Scott, S. M., Shao, D., Wang, G., and Lian, J., Science 349, 1083 (2015).Google Scholar
Meng, F., Chen, C., and Song, J., J. Phys. Chem. Lett. 6, 4038 (2015).CrossRefGoogle Scholar
Herrera, C., García, G., Atilhan, M., and Aparicio, S., J. Phys. Chem. C 119, 24529 (2015).Google Scholar
Li, X., Ren, H., Wu, W., Li, H., Wang, L., He, Y., Wang, J., and Zhou, Y., Sci. Rep. 5, 15190 (2015).Google Scholar
Bong, J., Lim, T., Seo, K., Kwon, C.-A., Park, J. H., Kwak, S. K., and Ju, S., Sci. Rep. 5, 14321 (2015).Google Scholar
Kozbial, A., Li, Z., Conaway, C., McGinley, R., Dhingra, S., Vahdat, V., Zhou, F., D’Urso, B., Liu, H., and Li, L., Langmuir 30, 8598 (2014).Google Scholar
Li, Z., Wang, Y., Kozbial, A., Shenoy, G., Zhou, F., McGinley, R., Ireland, P., Morganstein, B., Kunkel, A., Surwade, S. P., Li, L., and Liu, H., Nature Mater. 12, 925 (2013).Google Scholar
Ricardo, K. B., Sendecki, A., and Liu, H., Chem. Commun. 50, 2751 (2014).Google Scholar
Rafiee, J., Mi, X., Gullapalli, H., Thomas, A. V., Yavari, F., Shi, Y., Ajayan, P. M., and Koratkar, N. a., Nature Mater. 11, 217 (2012).Google Scholar
Kozbial, A., Li, Z., Sun, J., Gong, X., Zhou, F., Wang, Y., Xu, H., Liu, H., and Li, L., Carbon 74, 218 (2014).Google Scholar
Werder, T., Walther, J. H., Jaffe, R. L., Halicioglu, T., Noca, F., and Koumoutsakos, P., Nano Letters 1, 697 (2001).Google Scholar
Wang, S., Zhang, Y., Abidi, N., and Cabrales, L., Langmuir 25, 11078 (2009).Google Scholar
Editorial, Nature Mater. 12, 865 (2013).CrossRefGoogle Scholar
Plimpton, S., J. Comp. Phys. 117, 1 (1995). http://lammps.sandia.gov/.CrossRefGoogle Scholar
Pollock, E. L. and Glosli, J., Comp. Phys. Commun. 95, 93 (1996).Google Scholar
Aksyonov, S. A. and Williams, P., Rapid Commun. in Mass Spectrometry 15, 2001 (2001).Google Scholar
Koplik, J., Phys. of Fluids 27, 082001 (2015).Google Scholar
Li, X. H., Zhang, X. X., and Chen, M., Phys. of Fluids 27, 052007 (2015).Google Scholar
Sun, S. N. and Urbassek, H. M., Phys. Rev. E 84, 056315 (2011).Google Scholar
Sun, S. N. and Urbassek, H. M., Soft Matter 8, 4708 (2012).Google Scholar
Koplik, J. and Zhang, R., Phys. of Fluids 25, 022003 (2013).Google Scholar
Berendsen, H. J. C., Grigera, J. R., and Straatsma, T. P., J. Phys. Chem. 91, 6269 (1987).Google Scholar
Jaffe, R. L., Gonnet, P., Werder, T., Walther, J. H., and Koumoutsakos, P., Mol. Simul. 30, 205 (2004).Google Scholar