Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-25T17:04:25.707Z Has data issue: false hasContentIssue false

Nagelschmidtite as a candidate host phase for actinides, rare earth and different waste elements

Published online by Cambridge University Press:  17 December 2017

Sergey V. Stefanovsky*
Affiliation:
Laboratory of Radioecology and Radiation Problems, Frumkin Institute of Physical Chemistry and Electrochemistry RAS, 31-4 Leninskii av., Moscow, 119071Russia
Olga I. Stefanovsky
Affiliation:
Laboratory of Radioecology and Radiation Problems, Frumkin Institute of Physical Chemistry and Electrochemistry RAS, 31-4 Leninskii av., Moscow, 119071Russia
Ivan L. Prusakov
Affiliation:
Department of Glass and Glass Ceramics, D. Mendeleev University of Chemical Technology, Miusskaya sq. 1, 125047, Russia
*
Get access

Abstract

Nagelschmidtite, Ca7P2Si2O16, is an end-member of continuous solid solution Ca2SiO4 – Ca3(PO4)22Ca2SiO4 within the pseudo-binary system Ca3(PO4)2 – Ca2SiO4 (whitlockite – larnite). This phase is capable to wide isomorphic exchanges in Ca, P and Si sites: Ca2+ = Sr2+; Ca2+ = Eu2+; Ca2+ + P5+ = (RE,An)3+ + Si4+, 2Ca2+ = Na+ + (RE,An)3+; 2Ca2+ = An4+ + ☐; Ca2+ + Si4+ = (RE,An)3+ + (Al,Fe)3+; Ca2+ + Si4+ = Na+ + P5+; 2Ca2+ = Na+ + (Al,Fe)3+; Ca2+ + P5+ = Na+ + S6+. It was found in metallurgical slags and geological formations. We revealed nagelschmidtite-type phase in vitrified phosphorus-bearing radioactive incinerator slags. The materials were glass-crystalline and contained nano-sized nagelschmidtite crystals distributed in vitreous matrix phase. Average chemical composition of the largest (few microns) crystals was recalculated to formula Na1.21K1.05Ca2.22Al2.02Fe0.46Si2.69P1.26U0.08O15.76. Significant oxygen misbalance suggests higher than U(IV) oxidation state for uranium – U(V) or U(VI). Capability of nagelschmidtite to be crystallized from melt makes it promising phase for actinides, rare earths and some other fission and corrosion products at using a melting route to nuclear waste forms including cold crucible induction melting and self-propagating high-temperature synthesis.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Stefanovsky, S.V., Yudintsev, S.V., Giere, R., Lumpkin, G.R., in: Energy, Waste and the Environment: A Geological Perspective (Geological Society, London, 2004) vol. 236, pp. 3763.Google Scholar
Hayward, P.J.. Glass-Ceramics, in: Radioactive Waste Forms for the Future edited by Lutze, W. and Ewing, R.C. (Elsevier Science Publishers B.V., 1988) pp. 427493.Google Scholar
Stefanovsky, S.V., Yudintsev, S.V., Russ. Chem. Rev. 85, 962 (2016).Google Scholar
Dmitriev, S.A., Knyazev, I.A., Lifanov, F.A., Savkin, A.E., Stefanovsky, S.V., Tolstov, I.D., in: 1996 International Conference on Incineration and Thermal Treatment Technologies. Proceedings. May 6-10, 1996. Savannah, GA, 1996, pp. 247251.Google Scholar
Lifanov, F.A., Stefanovsky, S.V., Dmitriev, S.A., Patent 1389566 USSR, 1987.Google Scholar
Stefanovsky, S.V., Lifanov, F.A., Bull. Acad. Sci. USSR: Inorg. Mater. (Russ.) 25, 502 (1989).Google Scholar
Lifanov, F.A., Stefanovsky, S.V., Sobolev, I.A., in: GLASS’89. XV International Congress on Glass. Proceedings, edited by Mazurin, O.V.. Vol. 3b (Nauka, Leninigrad, 1989) pp. 202205.Google Scholar
Lifanov, F.A., Stefanovsky, S.V., Tsveshko, O.N., Lashchenova, T.N., Fiz. Khim. Stekla (Russ.), 17, 810 (1991).Google Scholar
Stefanovsky, S.V., Ivanov, I.A., Gulin, A.N., J. Appl. Spectr. 57, 581 (1992).Google Scholar
Stefanovskii, S.V., Trul’, O.A., J. Appl. Spectr. 57, 771 (1992).Google Scholar
Stefanovsky, S., Lifanov, F., Ivanov, I., in: XVI International Congress on Glass. Madrid. Bol. Soc. Esp. Ceram. Vid. 31-C, N3 (1992) pp. 209214.Google Scholar
Bogomolova, L.D., Pavlushkina, T.K., Stefanovskii, S.V., Teplyakov, Yu. G., Tril’, O.A.., Glass. Phys. Chem. 19 413 (1993).Google Scholar
Dmitriyev, S.A., Stefanovsky, S.V., Knyazev, I.A., Lifanov, F.A., Mater. Res. Soc. Symp. Proc. 353, 1323 (1995).Google Scholar
Lashtchenova, T.N., Lifanov, F.A., Stefanovsky, S.V., in: Waste Management ’97. HLW, LLW, Mixed Wastes and Environmental Restoration - Working Towards A Cleaner Environment. Proc. Int. Symp. Tucson, CD-ROM (1997) Report 1317.Google Scholar
Lashtchenova, T.N., Stefanovsky, S.V., in: Proc. IT3 Conf. Int. Conf. On Incineration and Thermal Treatment Technologies. May 11-15, 1998. Salt Lake City (1998) pp. 603607.Google Scholar
Malinina, G.A., Stefanovsky, O.I., Stefanovsky, S.V., J. Nucl. Mater. 416, 230 (2011).Google Scholar
Malinina, G.A., Stefanovsky, O.I., Stefanovsky, S.V., Glass Phys. Chem. 38, 280 (2012).CrossRefGoogle Scholar
Stefanovsky, S.V., Stefanovsky, O.I., Malinina, G.A., in: Waste Management 2012 Conference, February 25 – March 1, 2012, Phoenix, AZ, Report 12207, CD-ROM (2012).Google Scholar
Malinina, G.A., Stefanovsky, S.V., Nikonov, B.S., Phys. Chem. Mater. Treat. (Russ.) [6], 82 (2013).Google Scholar
Malinina, G.A., Stefanovsky, S.V., J. Appl. Spectr. 81, 200 (2014).Google Scholar
Malinina, G.A., Stefanovsky, S.V., Radiochemistry 56, 628 (2014).CrossRefGoogle Scholar
Malinina, G.A., Stefanovsky, S.V., Shiryaev, A.A., Zubavichus, Y.V., Ceramics for Environmental and Energy Applications II. Ceram. Trans. 246 (2014) pp. 265272.CrossRefGoogle Scholar
Nagelschmidt, G., J. Chem. Soc. 865 (1937).Google Scholar
Barrett, R.L., McCaughey, W.J., Amer. Miner. 27, 680 (1942).Google Scholar
Gross, S.. The Mineralogy of the Hatrurim Formation, Israel, Geol. Surv. Israel Bull. 70 (1977) pp. 180.Google Scholar
Galuskin, E.V., Galuskina, I.O., Gfeller, F., Krüger, B., Kusz, J., Vapnik, Y., Dulski, M., Dzierźanovski, P., Eur. J. Miner. 28, 105 (2016).CrossRefGoogle Scholar
Nurse, R.W., Welch, J.H., Gutt, W., J. Chem. Soc. [220] 1077 (1959).Google Scholar
Rubio, V., de la Casa-Lillo, M.A., De Aza, S., De Aza, P.N., J. Amer. Ceram. Soc. 94, 4459 (2011).Google Scholar
Rivenet, M., Cousin, O., Boivin, J.C., Abraham, F., Ruchaud, N., Hubert, P., J. Eur. Ceram. Soc. 20, 1169 (2000).Google Scholar
Kuznetsov, A.V., Veresov, A.G., Putlyaev, V.I., Int. Sci. J. Alter. Energy Ecology (Russ.), 45, 82 (2007).Google Scholar
Wu, Ch., Fan, W., Chang, J., Zhang, M., Xiao, Y., J. Amer. Ceram. Soc, 96, 928 (2013).CrossRefGoogle Scholar
Evdokimov, P.V., Putlyaev, V.I., Ivanov, V.K., Garshev, A.P., Shatalova, T.B., Orlov, N.K., Klimashina, E.S., Safronova, T.V., Russ. J. Inorg. Chem. 59, 1219 (2014).CrossRefGoogle Scholar
Celotti, G., Landi, E., J. Eur. Ceram. Soc. 23, 851 (2003).Google Scholar
Sugiyama, K., Kato, Y., Mikouchi, T., in: 20th General Meeting of the International Mineralogical Association, 21-27 August 2010, Budapest, Hungary, 20 (2010), p. 725.Google Scholar
Widmer, R., Gfeller, F., Armbruster, T., J. Amer. Ceram. Soc. 98, 3956 (2015).Google Scholar
Gfeller, F., Widmer, R., Krüger, B., Galuskin, E.V., Galuskina, I.O., Armbruster, T., Eur. J. Mineral. 27, 755 (2015).Google Scholar
Shevtsova, N.N., Bushuev, N.N., Volfkovich, S.I., Aziev, R.G., Moscow Univ. Chem. Bull. 36, 117 (1981).Google Scholar
Mikouchi, T., Sugiyama, K., Kato, Y., Yamaguchi, A., Koizumi, E., Kaneda, K., in: 41st Lunar and Planetary Science Conference, March 1-5, 2010, The Woodlands, TX, 2343 (2010).Google Scholar
Segnit, E.R., J. Miner. Soc. 29, 173 (1950).Google Scholar
Eitel, W.. The Physical Chemistry of the Silicates (The University of Chicago Press, Chicago, 1954).Google Scholar
Schreiber, H.D., Kozak, S.J., Leonhard, P.G., McManus, K.K., Glastech. Ber. 60, 389 (1987).Google Scholar
Bingham, P.A., Hand, R.J., Mater. Res. Bull. 43, 1679 (2008).Google Scholar
Stefanovsky, S.V., Stefanovsky, O.I., Remizov, M.B., Belanova, E.A., Kozlov, P.V., Glazkova, Ya.S., Sobolev, A.V., Presniakov, I.A., Kalmykov, S.N., Myasoedov, B.F., J. Nucl. Mater. 466, 142 (2015).Google Scholar