Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-25T17:04:46.980Z Has data issue: false hasContentIssue false

Multipole Resonances in Transdimensional Lattices of Plasmonic and Silicon Nanoparticles

Published online by Cambridge University Press:  06 March 2019

Viktoriia E. Babicheva*
Affiliation:
College of Optical Sciences, University of Arizona, USA
Get access

Abstract

Transdimensional photonics has emerged as a new field of science and engineering that explores the optical properties of materials and nanostructures in the translational regime between two and three dimensions. In the present work, we study an example of such transdimensional lattice consisting of nanoparticle array, and we aim at a direct comparison of lattice resonances excited in the periodic lattices of either plasmonic (gold) or silicon nanoparticles of the same size and interparticle spacing. We numerically analyze extinction cross-sections and reflection from the array, and we include electric and magnetic dipoles and electric quadrupoles into consideration. Lattice resonances are excited at the wavelength close to Rayleigh anomaly which is defined by the array periodicity, and different multipoles respond to one or another period of rectangular array depending on incident light polarization. We show that lattice resonances originating from dipole moments are extended to the larger spectral range than electric-quadrupole lattice resonances. Overlap of resonances causes a decrease in reflection (generalized Kerker effect) and, in the case of electric quadrupole and magnetic dipole moments, the coupling of the multipoles is enabled by the lattice.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Novotny, L., Hecht, B., Principles of Nano-Optics Cambridge University Press, Cambridge, 2012CrossRefGoogle Scholar
Prodan, E., Radloff, C., Halas, N. J., Nordlander, P., Science 302, 419422 (2003).CrossRefGoogle Scholar
Evlyukhin, A. B., Reinhardt, C., Seidel, A., Luk’yanchuk, B. S., Chichkov, B. N., Phys. Rev. B 82(4), 045404 (2010).CrossRefGoogle Scholar
Evlyukhin, A. B., Reinhardt, C., Zywietz, U., Chichkov, B.N., Phys. Rev. B 85(24), 245411 (2012).CrossRefGoogle Scholar
Zhukovsky, S. V., Babicheva, V. E., Uskov, A. V., Protsenko, I. E., and Lavrinenko, A. V., Plasmonics 9, 283 (2014).CrossRefGoogle Scholar
Zhukovsky, S. V., Babicheva, V. E., Uskov, A. V., Protsenko, I. E., and Lavrinenko, A. V., Appl. Phys. A 116, 929 (2014).CrossRefGoogle Scholar
Tang, Z. H., Peng, R. W., Wang, Z., Wu, X., Bao, Y. J., Wang, Q. J., Zhang, Z. J., Sun, W. H., and Wang, Mu, Phys. Rev. B 76, 195405 (2007).CrossRefGoogle Scholar
Babicheva, V. E., Lozovik, Y.E., Optical and Quantum Electronics 41, 299-313 (2009).CrossRefGoogle Scholar
Li, D., Qin, L., Xiong, X., Peng, R.-W., Hu, Q., Ma, G.-B., Zhou, H.-S., Wang, M., Opt. Express 19, 22942-22949 (2011).CrossRefGoogle Scholar
Ginn, J. C., Brener, I., Peters, D. W., Wendt, J. R., Stevens, J. O., Hines, P. F., Basilio, L. I., Warne, L. K., Ihlefeld, J. F., Clem, P. G., Sinclair, M. B., Phys. Rev. Lett. 108, 097402 (2012).CrossRefGoogle Scholar
Evlyukhin, A. B., Novikov, S. M., Zywietz, U., Eriksen, R. L., Reinhardt, C., Bozhevolnyi, S. I., Chichkov, B. N., Nano Lett. 12(7), 37493755 (2012).Google Scholar
Krasnok, A. E., Miroshnichenko, A. E., Belov, P. A., Kivshar, Y. S., Opt. Express 20, 20599 (2012).Google Scholar
Zywietz, U., Evlyukhin, A.B., Reinhardt, C., Chichkov, B.N., Nature Commun. 5, Article #: 3402 (2014).CrossRefGoogle Scholar
Babicheva, V. E., Petrov, M., Baryshnikova, K., Belov, P., Journal of the Optical Society of America B 34, D18-D28 (2017).CrossRefGoogle Scholar
Kuznetsov, A.I., Miroshnichenko, A.E., Brongersma, M.L., Kivshar, Y.S., Luk’yanchuk, B., Science 354, aag2472 (2016).CrossRefGoogle Scholar
Jahani, S. and Jacob, Z., Nature Nanotechnology 11, 2336 (2016).CrossRefGoogle Scholar
Staude, I. and Schilling, J., Nature Photonics 11, 274284 (2017).CrossRefGoogle Scholar
Wang, C., Jia, Z. Y., Zhang, K., Zhou, Y., Fan, R. H., Xiong, X., and Peng, R. W., J. Appl. Phys. 115, 244312 (2014).CrossRefGoogle Scholar
Babicheva, V. E., Journal of Optics 19, 124013 (2017).CrossRefGoogle Scholar
Babicheva, V. E., MRS Advances 3, 1913 (2018).CrossRefGoogle Scholar
Babicheva, V. E., "Multipole resonances and directional scattering by hyperbolic-media antennas," arxiv.org/abs/1706.07259, accessed on January 28, 2019.Google Scholar
Boltasseva, A. and Shalaev, V. M., ACS Photonics 6, 13 (2019).CrossRefGoogle Scholar
Kerker, M., Wang, D., Giles, C., J. Opt. Soc. Am. 73, 765 (1983).CrossRefGoogle Scholar
Fu, Y. H., Kuznetsov, A. I., Miroshnichenko, A. E., Yu, Y. F., Luk’yanchuk, B., Nat. Commun. 4, 1527 (2013).CrossRefGoogle Scholar
Person, S., Jain, M., Lapin, Z., Sáenz, J. J., Wicks, G., Novotny, L., Nano Lett. 13(4), 1806 (2013).CrossRefGoogle Scholar
Staude, I., Miroshnichenko, A. E., Decker, M., Fofang, N. T., Liu, S., Gonzales, E., Dominguez, J., Luk, T. S., Neshev, D. N., Brener, I., Kivshar, Y.,. ACS Nano 7, 78247832 (2013).CrossRefGoogle Scholar
Decker, M., Staude, I., Falkner, M., Dominguez, J., Neshev, D. N., Brener, I., Pertsch, T., Kivshar, Y. S., Adv. Opt. Mater. 3, 813820 (2015).CrossRefGoogle Scholar
Babicheva, V. E. and Evlyukhin, A.B., Laser & Photonics Reviews 11, 1700132 (2017).CrossRefGoogle Scholar
Babicheva, V. E. and Moloney, J., Nanophotonics 7, 1663-1668 (2018).CrossRefGoogle Scholar
Pors, A., Andersen, S. K. H., and Bozhevolnyi, S. I., Opt. Express 23, 28808-28828 (2015).CrossRefGoogle Scholar
Alaee, R., Filter, R., Lehr, D., Lederer, F., and Rockstuhl, C., Opt. Lett. 40, 2645-2648 (2015).CrossRefGoogle Scholar
Babicheva, V. E. and Evlyukhin, A. B., ACS Photonics 5, 2022 (2018).CrossRefGoogle Scholar
Zou, S., Janel, N., Schatz, G. C., J. Chem. Phys. 120, 10871 (2004).CrossRefGoogle Scholar
Markel, V. A., J. Phys. B: Atom. Mol. Opt. Phys. 38, L115 (2005).CrossRefGoogle Scholar
Kravets, V. G., Schedin, F., Grigorenko, A. N., Phys. Rev. Lett. 101, 087403 (2008).CrossRefGoogle Scholar
Auguié, B. and Barnes, W.L., Phys. Rev. Lett. 101, 143902 (2008).CrossRefGoogle Scholar
Kravets, V. G., Kabashin, A. V., Barnes, W. L., Grigorenko, A. N., Chem. Rev. 118, 5912 (2018).CrossRefGoogle Scholar
Wang, W., Ramezani, M., Väkeväinen, A. I., Törmä, P., Gómez Rivas, J., Odom, T. W., Mater. Today 21, 303 (2018).CrossRefGoogle Scholar
Babicheva, V. E. and Evlyukhin, A.B., MRS Communications 8, 712-717 (2018).CrossRefGoogle Scholar
Babicheva, V. E. and Moloney, J., Laser & Photonics Reviews 12, 1800267 (2019).CrossRefGoogle Scholar
Yang, C. Y., Yang, J. H., Yang, Z. Y., Zhou, Z. X., Sun, M. G., Babicheva, V. E., Chen, K. P., ACS Photonics 5, 2596 (2018).CrossRefGoogle Scholar
Babicheva, V. E., MRS Communications 8, 1455-1462 (2018).CrossRefGoogle Scholar
Babicheva, V. E., MRS Advances 3, 2783-2788 (2018).CrossRefGoogle Scholar
Kildishev, A.V., Boltasseva, A., Shalaev, V.M., Science 339, 1232009 (2013).CrossRefGoogle Scholar