Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-22T19:28:53.995Z Has data issue: false hasContentIssue false

Morphology Control in van der Waals Epitaxy of Bismuth Telluride Topological Insulators

Published online by Cambridge University Press:  13 April 2020

Celso I. Fornari
Affiliation:
National Institute for Space Research, São José dos Campos, SP, Brazil
Eduardo Abramof
Affiliation:
National Institute for Space Research, São José dos Campos, SP, Brazil
Paulo H. O. Rappl
Affiliation:
National Institute for Space Research, São José dos Campos, SP, Brazil
Stefan W. Kycia
Affiliation:
Department of Physics, University of Guelph, Guelph, ON, Canada
Sérgio L. Morelhão*
Affiliation:
Institute of Physics, University of São Paulo, São Paulo 05508-090, Brazil
*
Get access

Abstract

Bismuth telluride have regained significant attention as a prototype of topological insulator. Thin films of high quality have been investigated as a basic platform for novel spintronic devices. Low mobility of bismuth and high desorption coefficient of telluride compose a scenario where growth parameters have drastic effects on structural and electronic properties of the films. Recently [J. Phys. Chem. C 2019, 123, 24818−24825], a detailed investigation has been performed on the dynamics of defects in epitaxial films of this material, revealing the impact of film/substrate lattice misfit on the films’ lateral coherence. Very small lattice misfit (<0.05%) are expected to have no influence on quality of epitaxial system with atomic layers weakly bonded to each other by van der Waals forces, contrarily to what was observed. In this work, we investigate the correlation between lattice misfit and size and morphology of the film crystalline domains. Three-dimensional reciprocal-space maps of film Bragg reflections obtained with synchrotron X-rays are used to visualize the spatial conformation of the crystallographic domains through film thickness, while atomic force microscopy images provide direct information of the domains morphology at the film surface.

Type
Articles
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Morelhão, S. L., Kycia, S. W., Netzke, S., Fornari, C. I., Rappl, P. H. O., Abramof, E.. J. Phys. Chem. C 123, 24818-24825 (2019).CrossRefGoogle Scholar
He, L., Kou, X., Wang, K. L.. Phys. Status Solidi RRL 7, 50-63 (2013).CrossRefGoogle Scholar
Kriegner, D., Harcuba, P., Veselý, J., Lesnik, A., Bauer, G., Springholz, G. and Holý, V.. J. Appl. Cryst. 50, 369-377 (2017).CrossRefGoogle Scholar
Bonell, F., Cuxart, M. G., Song, K., Robles, R., Ordejón, P., Roche, S., Mugarza, A., , S. O.Valenzuela. Cryst. Growth Des. 17, 4655-4660 (2017).CrossRefGoogle Scholar
Hoefer, K., Becker, C., Rata, D., Swanson, J., Thalmeier, P., Tjeng, L. H.. Proc. Natl. Acad. Sci. U.S.A. 111, 14979 (2014).CrossRefGoogle Scholar
Fornari, C. I., Rappl, P. H. O., Morelhão, S. L., Peixoto, T. R. F., Bentmann, H., Reinert, F., Abramof, E.. APL Materials 4, 106107 (2016).CrossRefGoogle Scholar
Steiner, H., Volobuev, V., Caha, O., Bauer, G., Springholz, G., and Holý, V.. J. Appl. Crystallogr. 47, 18891900 (2014).CrossRefGoogle Scholar
Fornari, C. I., Rappl, P. H. O., Morelhão, S. L., Fornari, G., Travelho, J. S., de Castro, S., Pirralho, M. J. P., Pena, F. S., Peres, M. L., Abramof, E.. Mater. Res. Express 5, 116410 (2018).CrossRefGoogle Scholar
Avanci, L. H., Hayashi, M. A., Cardoso, L. P., Morelhão, S. L., Riesz, F., Rakennus, K., Hakkarainen, T.. J. Cryst. Growth 188, 220-224 (1998).CrossRefGoogle Scholar
Morelhão, S. L.. Quivy, A. A., Härtwig, J.. Hybrid and effective satellites for studying superlattices. Microelectronics Journal 34, 695-699 (2003).CrossRefGoogle Scholar
Morelhão, S. L., Remédios, C. M. R., Freitas, R. O., dos Santos, A. O.. J. Appl. Cryst. 93-101 (2011).CrossRefGoogle Scholar
Garcia, A. J. Jr., Rodrigues, L. N., Covre da Silva, S. F., Morelhão, S. L., Couto, O. D. D. Jr., Iikawa, F., Deneke, Ch.. Nanoscale 11, 3748-3756 (2019).CrossRefGoogle Scholar
Morelhão, S. L., Computer Simulation Tools for X-ray Analysis. (Graduate Texts in Physics Springer, Cham, 2016). pp. 139, 157, 174.CrossRefGoogle Scholar
Zeng, Z., Morgan, T. A., Fan, D., Li, C., Hirono, Y., Hu, X., Zhao, Y., Lee, J. S., Wang, J., Wang, Z. M., Yu, S., Hawkridge, M. E., Benamara, M., Salamo, G. J.. AIP Advances 3, 072112 (2013).CrossRefGoogle Scholar
Caha, O., Dubroka, A., Humlíček, J., Holý, V., Steiner, H., Ul-Hassan, M., Sánchez-Barriga, J., Rader, O., Stanislavchuk, T. N., Sirenko, A. A., Bauer, G., Springholz, G.. Cryst. Growth Des. 13, 3365-3373 (2013).CrossRefGoogle Scholar
Coelho, P. M., Ribeiro, G. A. S., Malachias, A., Pimentel, V. L., Silva, W. S., Reis, D. D., Mazzoni, M. S. C., Paniago, R. M.. Nano Letters 13, 4517-4521 (2013).CrossRefGoogle Scholar
Ginley, T. P., Wang, Y., Law, S.. Crystals 6, 154 (2016).CrossRefGoogle Scholar
Guo, Y., Liu, Z., Peng, H.. Small 11, 3290-3305 (2015).CrossRefGoogle Scholar
Freitas Cabral, A. J., Valério, A., Morelhão, S. L., Medeiros, M. S., Remédios, C. M. R.. Cryst. Growth Des. 20, 600-607 (2019).CrossRefGoogle Scholar
Valério, A., Morelhão, S. L., Freitas Cabral, A. J., Soares, M. M., Remédios, C. M. R.. MRS Advances, 1-7 (2019). doi: 10.1557/adv.2019.445.Google Scholar