Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-23T11:56:02.727Z Has data issue: false hasContentIssue false

Modelling of III-Nitride Epitaxial Layers Grown on Silicon Substrates with Low Dislocation-Densities

Published online by Cambridge University Press:  28 January 2019

Khaled H. Khafagy
Affiliation:
Centre for Simulation Innovation and Advanced Manufacturing, The British University in Egypt, El-Sherouk City, Cairo11837, Egypt Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC27695, USA.
Tarek M. Hatem*
Affiliation:
Centre for Simulation Innovation and Advanced Manufacturing, The British University in Egypt, El-Sherouk City, Cairo11837, Egypt Faculty of Energy and Environmental Engineering, The British University in Egypt, El-Sherouk City, Cairo11837, Egypt.
Salah M. Bedair
Affiliation:
Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC27695, USA.
*
Get access

Abstract

Large lattice and thermal expansion coefficients mismatches between III-Nitride (III N) epitaxial layers and their substrates inevitably generate defects on the interfaces. Such defects as dislocations affect the reliability, life time, and performance of photovoltaic (PV) devices. High dislocation densities in epitaxial layer generate higher v-shaped pits densities on the layer top surface that also directly affect the device performance. Therefore, using an approach such as the embedded void approach (EVA) for defects reduction in the epitaxial layers is essential. EVA relies on the generation of high densities of embedded microvoids (∼108/cm2), with ellipsoidal shapes. These tremendous number of microvoids are etched near the interface between the III N thin-film and its substrate where the dislocation densities present with higher values.

This article used a 3-D constitutive model that accounts the crystal plasticity formulas and specialized finite element (FE) formulas to model the EVA in multi-junction PV and therefore to study the effect of the embedded void approach on the defects reduction. Mesh convergence and 2-D analytical solution validation is conducted with accounting thermal stresses. Several aspect and volume ratios of the embedded microvoids are used to optimize the microvoid dimensions.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Cheng, J., Yang, X., Sang, L., Guo, L., Zhang, J., Wang, J., He, C., Zhang, L., Wang, M., Xu, F. and Tang, N., Scientific reports, 6 (2016) 23020.CrossRefGoogle Scholar
Kukushkin, S.A., Osipov, A.V., Bessolov, V.N., Medvedev, B.K., Nevolin, V.K. and Tcarik, K.A., Rev. Adv. Mater. Sci, 17 (2008) 1-32.Google Scholar
Freund, L.B. and Suresh, S., Thin film materials: stress, defect formation and surface evolution. Cambridge University Press (2004).CrossRefGoogle Scholar
Yamaguchi, M., Yamamoto, A. and Itoh, Y., Journal of applied physics, 59(1986) 1751-1753.CrossRefGoogle Scholar
Kumakura, K., Makimoto, T., Kobayashi, N., Hashizume, T., Fukui, T. and Hasegawa, H., Applied Physics Letters, 86 (2005) 052105.CrossRefGoogle Scholar
Mion, C., Muth, J.F., Preble, E.A. and Hanser, D., Applied Physics Letters, 89 (2006) 092123.CrossRefGoogle Scholar
Northrup, J.E., Romano, L.T. and Neugebauer, J., Applied physics letters, 74 (1999) 2319-2321.CrossRefGoogle Scholar
Romanov, A.E. and Speck, J.S., Applied Physics Letters, 83 (2003) 2569-2571.CrossRefGoogle Scholar
Lobanova, A.V., Kolesnikova, A.L., Romanov, A.E., Karpov, S.Y., Rudinsky, M.E. and Yakovlev, E.V., Applied Physics Letters, 103 (2013) 152106.CrossRefGoogle Scholar
Liu, J., Mao, Q., Wu, X. and Jiang, F., CrystEngComm, 15 (2013) 3372-3376.CrossRefGoogle Scholar
Dadgar, A., Poschenrieder, M., Bläsing, J., Fehse, K., Diez, A. and Krost, A., Applied Physics Letters, 80 (2002) 3670-3672.CrossRefGoogle Scholar
Dadgar, A., Alam, A., Riemann, T., Bläsing, J., Diez, A., Poschenrieder, M., Strassburg, M., Heuken, M., Christen, J. and Krost, A., physica status solidi (a), 188 (2001), 155-158.3.0.CO;2-P>CrossRefGoogle Scholar
Dadgar, A., Poschenrieder, M., Contreras, O., Christen, J., Fehse, K., Bläsing, J., Diez, A., Schulze, F., Riemann, T., Ponce, F.A. and Krost, A., physica status solidi (a), 192 (2002) 308-313.3.0.CO;2-M>CrossRefGoogle Scholar
Feltin, E., Beaumont, B., Laügt, M., De Mierry, P., Vennéguès, P., Lahreche, H., Leroux, M. and Gibart, P., Applied Physics Letters, 79 (2001) 3230-3232.CrossRefGoogle Scholar
Cheng, K., Leys, M., Degroote, S., Van Daele, B., Boeykens, S., Derluyn, J., Germain, M., Van Tendeloo, G., Engelen, J. and Borghs, G., Journal of Electronic Materials, 35(2006), 592-598.CrossRefGoogle Scholar
Arslan, E., Ozturk, M.K., Teke, A., Ozcelik, S. and Ozba, E., Journal of Physics D: Applied Physics, 41 (2008) 155317.CrossRefGoogle Scholar
Bedair, S.M., El-Masry, N.A. and Frajtag, P., North Carolina State University, 2013, U.S. Patent Application 13/876,132.Google Scholar
Frajtag, P., El-Masry, N.A., Nepal, N. and Bedair, S.M., Applied Physics Letters, 98 (2011) 023115.Google Scholar
Frajtag, P., Samberg, J.P., El-Masry, N.A., Nepal, N. and Bedair, S.M., Journal of Crystal Growth, 322 (2011) 27-32.CrossRefGoogle Scholar
Khafagy, K.H., Hatem, T.M. and Bedair, S.M., Applied Physics Letters, 112 (2018) 042109.CrossRefGoogle Scholar
Khafagy, K.H., Hatem, T.M. and Bedair, S.M., TMS Annual Meeting & Exhibition, 2018, pp. 453-461.Google Scholar
Salah, S., Hatem, T., Khalil, E.E., Bedair, S. and AbdelMaksoud, W.A., 55th AIAA Aerospace sciences meeting , 2017, p. 1997.Google Scholar
Wu, J., Walukiewicz, W., Yu, K., Ager, J.W. III, Haller, E.E., Lu, H. and Schaff, W.J., Applied Physics Letters, 80 (2002) 4741-4743.CrossRefGoogle Scholar
Zhang, X., Wang, X., Xiao, H., Yang, C., Ran, J., Wang, C., Hou, Q. and Li, J., Journal of Physics D: Applied Physics, 40 (2007) 7335.CrossRefGoogle Scholar
Hatem, T.M. and Zikry, M.A., Materials Science and Technology, 27(2011)1570-1573.CrossRefGoogle Scholar
Hatem, T.M. and Zikry, M.A., Computers, Materials, & Continua, 17(2010) 127-147.Google Scholar
Hatem, T.M. and Zikry, M.A., Journal of the Mechanics and Physics of Solids, 58 (2010) 1057-1072.CrossRefGoogle Scholar
Hatem, T.M. and Zikry, M.A., Journal of Engineering Materials and Technology, 131 (2009) 041207.CrossRefGoogle Scholar
Shanthraj, P., Hatem, T.M., and Zikry, M.A., MRS Online Proceedings Library Archive 1296 (2011).Google Scholar
Wagih, M., Tang, Y., Hatem, T., and El-Awady, J.A., Materials Research Letters, 3(4) (2015) pp.184-189.Google Scholar
Kutana, A. and Erwin, S.C., Physical Review B, 87 (2013) 045314.CrossRefGoogle Scholar
Morkoç, Hadis, 2009, Handbook of nitride semiconductors and devices, Materials Properties, Physics and Growth (Vol. 1). John Wiley & Sons.Google Scholar