Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-10T19:52:09.077Z Has data issue: false hasContentIssue false

Modeling of Nuclear Waste Forms: State-of-the-Art and Perspectives

Published online by Cambridge University Press:  31 January 2020

Piotr. M. Kowalski*
Affiliation:
Institute of Energy and Climate Research (IEK-6 & IEK-13), Forschungszentrum Jülich, Wilhelm-Johnen-Straβe, 52425 Jülich, Germany JARA High-Performance Computing, Schinkelstraβe 2, 52062 Aachen, Germany
Steve Lange
Affiliation:
Institute of Energy and Climate Research (IEK-6 & IEK-13), Forschungszentrum Jülich, Wilhelm-Johnen-Straβe, 52425 Jülich, Germany JARA High-Performance Computing, Schinkelstraβe 2, 52062 Aachen, Germany
Guido Deissmann
Affiliation:
Institute of Energy and Climate Research (IEK-6 & IEK-13), Forschungszentrum Jülich, Wilhelm-Johnen-Straβe, 52425 Jülich, Germany JARA High-Performance Computing, Schinkelstraβe 2, 52062 Aachen, Germany
Mengli Sun
Affiliation:
Institute of Energy and Climate Research (IEK-6 & IEK-13), Forschungszentrum Jülich, Wilhelm-Johnen-Straβe, 52425 Jülich, Germany JARA High-Performance Computing, Schinkelstraβe 2, 52062 Aachen, Germany School of Nuclear Science and Technology, Lanzhou University, Tianshui South Road 222, Lanzhou 730000, China
Kristina O. Kvashnina
Affiliation:
The Rossendorf Beamline at ESRF– The European Synchrotron, CS40220 38043, Grenoble Cedex 9, France Helmholtz Zentrum Dresden-Rossendorf (HZDR), Institute of Resource Ecology, PO Box 510119, 01314 Dresden, Germany
Robert Baker
Affiliation:
School of Chemistry, University of Dublin, Trinity College, College Green, Dublin 2, Ireland
Philip Kegler
Affiliation:
Institute of Energy and Climate Research (IEK-6 & IEK-13), Forschungszentrum Jülich, Wilhelm-Johnen-Straβe, 52425 Jülich, Germany JARA High-Performance Computing, Schinkelstraβe 2, 52062 Aachen, Germany
Gabriel Murphy
Affiliation:
Institute of Energy and Climate Research (IEK-6 & IEK-13), Forschungszentrum Jülich, Wilhelm-Johnen-Straβe, 52425 Jülich, Germany JARA High-Performance Computing, Schinkelstraβe 2, 52062 Aachen, Germany
Dirk Bosbach
Affiliation:
Institute of Energy and Climate Research (IEK-6 & IEK-13), Forschungszentrum Jülich, Wilhelm-Johnen-Straβe, 52425 Jülich, Germany JARA High-Performance Computing, Schinkelstraβe 2, 52062 Aachen, Germany
*
*Corresponding author: e-mail: [email protected]
Get access

Abstract

Computational modeling is an important aspect of the research on nuclear waste materials. In particular, atomistic simulations, when used complementary to experimental efforts, contribute to the scientific basis of safety case for nuclear waste repositories. Here we discuss the state-of-the-art and perspectives of atomistic modeling for nuclear waste management on a few cases of successful synergy of atomistic simulations and experiments. In particular, we discuss here: (1) the potential of atomistic simulations to investigate the uranium oxidation state in mixed-valence uranium oxides and (2) the ability of cementitious barrier materials to retain radionuclides such as 226Ra and 90Sr, and of studtite/metastudtite secondary peroxide phases to incorporate actinides such as Np and Am. The new contribution we make here is the computation of the incorporation of Sr by C-S-H (calcium silicate hydrate) phases.

Type
Articles
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ewing, R. C., PNAS, 96, 3432 (1999).CrossRefGoogle Scholar
Jahn, S. and Kowalski, P. M., Rev. Mineral. Geochem. 78, 691 (2014).CrossRefGoogle Scholar
Chroneos, A., Rushton, M., Jiang, C. and Tsoukalas, L., J. Nucl. Mater. 441, 29 (2013).CrossRefGoogle Scholar
Kowalski, P. M., Wunder, B. and Jahn, S., Geochim. Cosmochim. Acta 101, 285 (2013).CrossRefGoogle Scholar
Blouin, S., Kowalski, P. M. and Dufour, P., Astrophys. J. 848, 36 (2017).CrossRefGoogle Scholar
Becke, A. D., Phys. Rev. A, 38, 3098 (1988).10.1103/PhysRevA.38.3098CrossRefGoogle Scholar
Wen, X.-D., Martin, R. L., Henderson, T. M. and Scuseria, G. E., Chem. Rev. 113, 1063 (2013).CrossRefGoogle Scholar
Shamov, G. A., Schreckenbach, G. and Vo, T. N., Chem. Eur. J. 13, 4932 (2007).CrossRefGoogle Scholar
Iché-Tarrat, N. and Marsden, C. J., J. Phys. Chem. A 112, 7632 (2008).CrossRefGoogle Scholar
Beridze, G. and Kowalski, P. M., J. Phys. Chem. A 118, 11797 (2014).CrossRefGoogle Scholar
Beridze, G., Birnie, A., Koniski, S., Ji, Y. and Kowalski, P. M., Prog. Nucl. Energy 92, 142 (2016).CrossRefGoogle Scholar
Kowalski, P. M., Beridze, G., Ji, Y.. and Li, Y., MRS Advances 2, 491 (2017).CrossRefGoogle Scholar
Cococcioni, M. and de Gironcoli, S., Phys. Rev. B 71, 035105 (2005).CrossRefGoogle Scholar
Odoh, S. O., Pan, Q. -J., Shamov, G. A., Wang, F., Fayek, M., Schreckenbach, G., Chem. Eur. J. 18, 7117 (2012).CrossRefGoogle Scholar
Rák, Z., Ewing, R. C., Becker, U., Phys. Rev. B 84, 155128 (2011).CrossRefGoogle Scholar
Floris, A., de Gironcoli, S., Gross, E. K. U. and Cococcioni, M., Phys. Rev. B 84, 161102 (2011).CrossRefGoogle Scholar
Wu, S., Kowalski, P. M., Yu, N., Malcherek, T., Depmeier, W., Bosbach, D., Wang, S., Suleimanov, E. V., Albrecht-Schmitt, T. E. and Alekseev, E. V., Inorg. Chem. 53, 7650 (2014).10.1021/ic500965vCrossRefGoogle Scholar
Murphy, G. L., Kennedy, B. J., Kimpton, J. A., Gu, Q., Johannessen, B., Beridze, G., Kowalski, P. M., Bosbach, D., Avdeev, M., and Zhang, Z., Inorg. Chem. 55, 9329 (2016).CrossRefGoogle Scholar
Kvashnina, K. O., Kowalski, P. M., Butorin, S. M., Leinders, G., Pakarinen, J., Bès, R., Li, H., and Verwerft, M., Chem. Commun 54, 9757 (2018).10.1039/C8CC05464ACrossRefGoogle Scholar
Giannozzi, P. et al., J. Phys. Condens. Matter. 21, 395502 (2009), http://www.quantum-espresso.org.10.1088/0953-8984/21/39/395502CrossRefGoogle Scholar
Perdew, J. P., Burke, K. and Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle Scholar
Perdew, J. P., Ruzsinszky, A., Csonka, G. I., Vydrov, O. A., Scuseria, G. E., Constantin, L. A., Zhou, X. and Burke, K., Phys. Rev. Lett. 100, 136406 (2008).10.1103/PhysRevLett.100.136406CrossRefGoogle Scholar
Vanderbilt, D., Phys. Rev. B 41, 7892 (1990).CrossRefGoogle Scholar
Shock, E. L., Sassani, D. C., Willis, M. and Sverjensky, D. A., Geochem. Cosmochim. Acta 61, 907 (1997).10.1016/S0016-7037(96)00339-0CrossRefGoogle Scholar
Smith, D. W., J. Chem. Educ. 54, 540 (1977).CrossRefGoogle Scholar
Latimer, W. M., J. Am. Chem. Soc. 73 1480 (1951).CrossRefGoogle Scholar
Baer, Y. and Schoenes, J., Solid State Commun. 33, 885 (1980).10.1016/0038-1098(80)91210-7CrossRefGoogle Scholar
Blanca-Romero, A., Kowalski, P. M., Beridze, G., Schlenz, H. and Bosbach, D., J. Comput. Chem. 35, 1339 (2014).CrossRefGoogle Scholar
Kowalski, P. M., Beridze, G., Li, Y., Ji, Y., Friedrich, C., Sasioglu, E. and Blügel, S., Ceram. Trans. 258, 205 (2016).10.1002/9781119236016.ch21CrossRefGoogle Scholar
Kowalski, P. M., Beridze, G., Vinograd, V. L. and Bosbach, D., J. Nucl. Mater. 464, 147 (2015).CrossRefGoogle Scholar
Ji, Y., Beridze, G., Bosbach, D. and Kowalski, P. M., J. Nucl. Mater. 494, 172 (2017).10.1016/j.jnucmat.2017.07.026CrossRefGoogle Scholar
Kowalski, P. M. and Li, Y., J. Eur. Ceram. Soc. 36, 2093 (2016).CrossRefGoogle Scholar
Li, Y., Kowalski, P. M., Blanca-Romero, A., Vinograd, V. L. and Bosbach, D., J. Solid State Chem. 220, 137 (2014).CrossRefGoogle Scholar
Kvashnina, K.O., Butorin, S.M., Martin, P., Glatzel, P., Phys. Rev. Lett. 111, 253002 (2013).CrossRefGoogle Scholar
Kvashnina, K.O., Kvashnin, Y.O., Butorin, S.M., J. Electron Spectros. Relat. Phenomena. 194, 27-36 (2014).CrossRefGoogle Scholar
Kvashnina, K.O., Scheinost, A.C., J. Synchrotron Radiat. 23, 836841 (2016).CrossRefGoogle Scholar
Leinders, G., Bes, R., Pakarinen, J., Kvashnina, K., Verwerft, M., Inorg. Chem. 56, 67846787 (2017).10.1021/acs.inorgchem.7b01001CrossRefGoogle Scholar
Vitova, T., Pidchenko, I., Biswas, S., Beridze, G., Dunne, P. W., Schild, D.,, Wang, Z., Kowalski, P. W. and Baker, R. J., Inorg. Chem. 57, 1735 (2018).CrossRefGoogle Scholar
Biswas, S., Edwards, S. J., Wang, Z., Si, H., Vintró, L. L., Twamley, B., Kowalski, P. M. and Baker, Robert J., Dalton Trans. 48, 13057 (2019).CrossRefGoogle Scholar
Lange, S., Kowalski, P. M., Pšenička, M., Klinkenberg, M., Rohmen, S., Bosbach, D. and Deissmann, G., Appl. Geochem. 96, 204 (2018).CrossRefGoogle Scholar
Tits, J., Wieland, E., Müller, C. J., Landesman, C. and Bradbury, M. H., J. Colloid Interface Sci. 300, 78 (2006).CrossRefGoogle Scholar
Tits, J., Iijima, K., Kamei, G. and Wieland, E., Radiochim. Acta 94, 637 (2006).CrossRefGoogle Scholar