Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-26T00:17:23.643Z Has data issue: false hasContentIssue false

Modeling and simulation of microstructural evolution in Zr based Bulk Metallic Glass Matrix Composites during solidification

Published online by Cambridge University Press:  10 July 2017

Muhammad Musaddique Ali Rafique*
Affiliation:
School of Engineering [Aerospace, Mechanical and Manufacturing Engineering], RMIT University, Queensbury Street, Carlton, 3053VIC, AUSTRALIA
*
Get access

Abstract

Bulk metallic glass and their composites are unique new materials which have superior mechanical and structural properties as compared to existing conventional materials. Owing to this, they are potential candidates for tomorrow’s structural applications. However, they suffer from disadvantages of poor ductility and little or no toughness which render them brittle and they manifest catastrophic failure on the application of force. Their behavior is dubious and requires extensive experimentation to draw conclusive results. In present study, an effort has been made to overcome this pitfall by simulation. A quantitative mathematical model based on KGT theory has been developed to describe nucleation and growth of second phase dendrites from melt in glassy matrix during solidification. It yields information about numerical parameters necessary to understand the behaviour of each individual element in multicomponent sluggish slurry and their effect on final microstructural evolution. Model is programmed and simulated in MATLAB®. Its validation is done by comparison with identical curves reported in literature previously for similar alloys. Results indicate that the effect of incorporating all heat transfer coefficients at macroscopic level and diffusion coefficients at microscopic level play a vital role in refining the model and bringing it closer to actual experimental observations. Two types of hypo and eutectic systems namely Zr65Cu15Al10Ni10 and Zr47.5Cu45.5Al5Co2 respectively were studied. Simulation results were found to be in good agreement with prior simulated and experimental values.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Klement, W., Willens, R.H., and Duwez, P.O.L., Nat, 187(4740), 869870 (1960)10.1038/187869b0CrossRefGoogle Scholar
Johnson, W.L., MRS Bull., 24(10), 4256 (1999)10.1557/S0883769400053252CrossRefGoogle Scholar
Ashby, M.F. and Greer, A.L., Scr. Mater., 54(3), 321326 (2006)10.1016/j.scriptamat.2005.09.051CrossRefGoogle Scholar
Flores, K.M. and Dauskardt, R.H., J. Mater. Res. 14(03), 638643 (1999)10.1557/JMR.1999.0642CrossRefGoogle Scholar
Eckert, J., et al. ., J. Mater. Res. 22(02), 285301 (2007)CrossRefGoogle Scholar
Das, J., et al. ., J. Alloys Compd., 483(1–2), 97101 (2009)CrossRefGoogle Scholar
Das, J., et al. ., Phys. Rev. Lett., 94(20), 205501 (2005)10.1103/PhysRevLett.94.205501CrossRefGoogle Scholar
Choi-Yim, H. and Johnson, W.L., App. Phys. Lett., 71(26), 38083810 (1997)10.1063/1.120512CrossRefGoogle Scholar
Cheng, J.L. and Chen, G., J Alloys Compd. 577, 451455 (2013)CrossRefGoogle Scholar
Chen, M., NPG Asia Mater., 3, 8290 (2011)10.1038/asiamat.2011.30CrossRefGoogle Scholar
Chen, M., Annu. Rev. Mater. Res., 38(1) 445469 (2008)10.1146/annurev.matsci.38.060407.130226CrossRefGoogle Scholar
Chen, H.S., Acta Metall., 22(12), 15051511 (1974)10.1016/0001-6160(74)90112-6CrossRefGoogle Scholar
Akihisa, I., et al. ., Jpn. J Appl. Phys., Part 1, 27(9A), L1579 (1988)Google Scholar
Johnson, W.L., et al. ., Sci., 332(6031), 828833 (2011)10.1126/science.1201362CrossRefGoogle Scholar
Jiang, M.Q., et al. ., Intermetallics, 18(12), 24682471 (2010)10.1016/j.intermet.2010.08.003CrossRefGoogle Scholar
Qiao, J., Jia, H., and Liaw, P.K., Mater. Sci. Eng., R, 100, 169 (2016)10.1016/j.mser.2015.12.001CrossRefGoogle Scholar
Schroers, J., Adv. Mater. 22(14), 15661597 (2010)CrossRefGoogle Scholar
Greer, A.L., Nat., 464(7292), 11371138 (2010)CrossRefGoogle Scholar
Greer, A.L., Sci., 267(5206), 19471953 (1995)10.1126/science.267.5206.1947CrossRefGoogle Scholar
Yi, J., et al. ., Adv. Eng. Mater., 18(6), 972977 (2016)10.1002/adem.201500354CrossRefGoogle Scholar
Cheng, Y.Q., Sheng, H.W., and Ma, E., Phys. Rev. B, 78(1), 014207 (2008)Google Scholar
Sarac, B., Springer, 2015Google Scholar
Greer, A.L., Nat Mater, 10(2), 8889 (2011)10.1038/nmat2949CrossRefGoogle Scholar
Gu, X.W., et al. ., Nano Lett., 14(10), 58585864 (2014)10.1021/nl5027869CrossRefGoogle Scholar
Schroers, J. and Johnson, W.L., Phys. Rev. Lett., 93(25), 255506 (2004)10.1103/PhysRevLett.93.255506CrossRefGoogle Scholar
Schuh, C.A., Hufnagel, T.C., and Ramamurty, U., Acta Mater., 55(12), 40674109 (2007)10.1016/j.actamat.2007.01.052CrossRefGoogle Scholar
Donovan, P.E. and Stobbs, W.M., Acta Metall., 29(8), 14191436 (1981)10.1016/0001-6160(81)90177-2CrossRefGoogle Scholar
Dodd, B. and Bai, Y., Elsevier, 2012Google Scholar
Gao, Y.F., et al. ., Acta Mater., 59(10), 41594167 (2011)10.1016/j.actamat.2011.03.039CrossRefGoogle Scholar
Greer, A.L., Cheng, Y.Q., and Ma, E., Mater. Sci. Eng., R, 74(4), 71132 (2013)10.1016/j.mser.2013.04.001CrossRefGoogle Scholar
Jiang, M.Q., Wang, W.H., and Dai, L.H., Scr. Mater., 60(11), 10041007 (2009)10.1016/j.scriptamat.2009.02.039CrossRefGoogle Scholar
Leng, Y. and Courtney, T.H., J. Mater. Sci., 26(3), 588592 (1991)10.1007/BF00588291CrossRefGoogle Scholar
Hajlaoui, K., et al. ., Mater. Sci. Eng., A, 449-451, 105110 (2007)10.1016/j.msea.2006.01.168CrossRefGoogle Scholar
Lewandowski, J.J., Wang, W.H., and Greer, A.L., Philos. Mag. Lett, 85(2), 7787 (2005)CrossRefGoogle Scholar
Zhang, Y. and Greer, A.L., J. of Alloys Compd., 434–435, 25 (2007)CrossRefGoogle Scholar
Zhang, T., et al. ., Metall. Mater. Trans. A, 45(5), 23822388 (2014)CrossRefGoogle Scholar
Liu, Y.H., et al. ., Sci., 315(5817), 13851388 (2007)CrossRefGoogle Scholar
Nishiyama, N., et al. ., Intermetallics, 30, 1924 (2012)10.1016/j.intermet.2012.03.020CrossRefGoogle Scholar
Schroers, J., JOM, 57(5), 3539 (2005)10.1007/s11837-005-0093-2CrossRefGoogle Scholar
Guo, G.-Q., et al. ., Metals, 5(4), 2093 (2015)10.3390/met5042093CrossRefGoogle Scholar
Guo, G.-Q., et al. ., Metals, 5(4), 2048 (2015)10.3390/met5042048CrossRefGoogle Scholar
Zu, F.-Q., Metals, 5(1), 395 (2015)CrossRefGoogle Scholar
Kim, D.H., et al. ., Prog. Mater. Sci., 58(8), 11031172 (2013)CrossRefGoogle Scholar
Ott, R.T., et al. ., Acta Mater., 53(7), 18831893 (2005)CrossRefGoogle Scholar
Rappaz, M. and Gandin, C.A., Acta Metall. Mater., 41(2), 345360 (1993)CrossRefGoogle Scholar
Kurz, W., Giovanola, B., and Trivedi, R., Acta Metall., 34(5), 823830 (1986)CrossRefGoogle Scholar
Wei, Y.H., et al. ., Sci. Technol. Weld. Joining, 12(2), 138146 (2007)CrossRefGoogle Scholar
Rappaz, M. and Blank, E., J. Cryst. Growth, 74(1), 6776 (1986)CrossRefGoogle Scholar
Rappaz, M., et al. ., Metall. Trans. A, 20(6), 11251138 (1989)CrossRefGoogle Scholar
Rappaz, M., et al. ., Metall. Trans. A, 21(6), 17671782 (1990)CrossRefGoogle Scholar
Gandin, C.-A., Rappaz, M., and Tintillier, R., Metall. Trans. A, 24(2), 467479 (1993)CrossRefGoogle Scholar
Zhang, J., et al. . In Proc. 24th. Int. Solid Freeform Fabr. Symp. UTexas Press, 739–48 (2014)Google Scholar
Zhou, X., et al. ., J. Mater. Sci., 51(14), 67356749 (2016)CrossRefGoogle Scholar
Gu, C., et al. ., Sci. and Technol. Weld. Joining, 22(1), 4758 (2017)CrossRefGoogle Scholar
Nastac, L., Acta Mater., 47(17), 42534262 (1999)CrossRefGoogle Scholar
Laurentiu, N. and Doru, M.S., Modell. Simul. Mater. Sci. Eng., 5(4), 391 (1997)Google Scholar
Von Neumann, J. and Burks, A.W., University of Illinois Press Urbana, 1996 (original 1950)Google Scholar
Reuther, K. and Rettenmayr, M., Comput. Mater. Sci., 95, 213220 (2014)CrossRefGoogle Scholar
Mullins, W.W. and Sekerka, R.F., J App. Phys., 35(2), 444451 (1964)CrossRefGoogle Scholar
Langer, J.S. and Müller-Krumbhaar, J., J. Cryst. Growth, 42, 1114, (1977)CrossRefGoogle Scholar
Bobadilla, M., Lacaze, J., and Lesoult, G., J. Cryst. Growth, 89(4), 531544 (1988)CrossRefGoogle Scholar
Yang, G., et al. ., Intermetallics, 22, 110115 (2012)CrossRefGoogle Scholar
Mills Kenneth C, in Recommended Values of Thermophysical Properties for Selected Commercial Alloys. Woodhead Publishing (2002)Google Scholar
GRIMVALL GÖRAN, in Thermophysical Properties of Materials. Elsevier Science B.V.: Amsterdam. (1999)Google Scholar
Valencia, J.J. and Quested, P., Model. Cast. Solidification Processing, 189 (2001)Google Scholar
Wu, K., Li, R., and Zhang, T., AIP Advances, 3(11), 112115 (2013)CrossRefGoogle Scholar
Yamasaki, M., Kagao, S., and Kawamura, Y., Scr. Mater., 53(1), 6367 (2005)CrossRefGoogle Scholar
Choy, C.L., et al. ., J App. Phys., 70(9), 49194925 (1991)CrossRefGoogle Scholar